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We investigate the choice of the bandwidth for the regression discontinuity estimator. We focus
on estimation by local linear regression, which was shown to have attractive properties (Porter, J. 2003,
“Estimation in the Regression Discontinuity Model” (unpublished, Department of Economics, University
of Wisconsin, Madison)). We derive the asymptotically optimal bandwidth under squared error loss.
This optimal bandwidth depends on unknown functionals of the distribution of the data and we propose
simple and consistent estimators for these functionals to obtain a fully data-driven bandwidth algorithm.
We show that this bandwidth estimator is optimal according to the criterion of Li (1987, “Asymptotic
Optimality for Cp, C(, Cross-validation and Generalized Cross-validation: Discrete Index Satigls
of Statistics15, 958-975), although it is not unique in the sense that alternative consistent estimators for
the unknown functionals would lead to bandwidth estimators with the same optimality properties. We
illustrate the proposed bandwidth, and the sensitivity to the choices made in our algorithm, by applying
the methods to a data set previously analysed by Lee (2008, “Randomized Experiments from Non-random
Selection in U.S. House Electionslournal of Econometricsl42, 675-697) as well as by conducting a
small simulation study.
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1. INTRODUCTION

Regression discontinuity (RD) designs for evaluating causal effects of interventions, where as-
signment to the intervention is (partly) determined by the value of an observed covariate exceed-
ing a threshold, were introduced Bjistlewaite and Campbe(l960. SeeShadish, Campbell

and Cook(2002 andCook (2008 for a historical perspective. A recent surge of applications in
economics includes studies of the impact of financial aid offers on college acceptance (Van Der
Klaauw, 2002), school quality on housing values (Black, 1999), class size on student achieve-
ment (Angrist and Lavy, 1999), air quality on health outcomes (Chay and Greenstone, 2005),
incumbency on re-electioth.ée 2008, and many others. Recent important theoretical work has
dealt with identification issuesighn, Todd and Van Der Klaay®001, HTV from hereon), op-

timal estimation Porter 2003, tests for validity of the desigrMcCrary, 2008, quantile effects
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934 REVIEW OF ECONOMIC STUDIES

(Frandsen2008 Frolich and Melly 2008, and the inclusion of covariategrlich, 2007).
General surveys includienbens and Lemieux2008, Van Der Klaauw(2008, andLee and
Lemieux(2010.

In RD settings, analyses typically focus on the average effect of the treatment for units with
values of the forcing variable close to the threshold, using local linear, or global polynomial
series estimatorgan and Gijbel$1992 andPorter(2003 show that local linear estimators are
rate optimal and have attractive bias properties. A key decision in implementing local methods
is the choice of bandwidth. In current practice researchers use a variatytadcapproaches
for bandwidth choice, such as standard plug-in and cross-validation methods from the general
non-parametric regression literatused.Fan and Gijbels1992 Hardle 1992 Wand and Jones
1994). These are typically based on objective functions which take into account the performance
of the estimator of the regression function over the entire support and do not yield optimal
bandwidths for the problem at hand. There are few papers in the literature that use bandwidths
which focus specifically on the RD settingudwig and Miller, 2007 DesJardins and McCall
2008 see discussion later in the paper), and none with optimality properties. In this paper, we
build on this literature by (i) deriving the asymptotically optimal bandwidth under squared error
loss, taking account of the special features of the RD setting, and (ii) providing a fully data-
dependent method for choosing the bandwidth that is asymptotically optimal in the sdnse of
(1987.1 Although optimal in large samples, the proposed algorithm involves initial bandwidth
choices and is not unique. We analyse the sensitivity of the results to these choices. We illustrate
our proposed algorithm using a data set previously analysdceby2008 and compare our
procedure to global methods and other local methods based on other error criteria. Simulations
indicate that our proposed algorithm works well in realistic settings.

2. BASIC MODEL

In the basic RD setting, researchers are interested in the causal effect of a binary treatment.
In the setting, we consider that we have a sampl&aiinits, drawn randomly from a large
population. For unit, fori =1,..., N, usingRubin’s (1974 potential outcome notation, the
variableY; (1) denotes the potential outcome for unigiven treatment and (0) denotes the
potential outcome without treatment. For unitve observe the treatment receivéd, equal to

1if uniti was exposed to the treatment and 0 otherwise, and the outcome corresponding to the

treatment received:
Yi(0) if W =0,

Yi(1) if W =1.

We also observe for each unit a scalar covariate, called the forcing variable, denotediby
Sectionb, we discuss the case with additional covariates. Define

Yi =Yi(VVi)=H

m(x) = E[Yi|Xj = x],

to be the conditional expectation of the outcome given the forcing variable. The idea behind the
sharp regression discontinuity (SRD) design is that the treatWieist determined solely by the
value of the forcing variabl; being on either side of a fixed and known threshoft:

VVi = 1Xi >C-

1. Matlab and Stata software for implementing this bandwidth rule is available on the Wetitpiténvww.
economics.harvard.edu/faculty/imbens/imbens.html.
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In Section5, we extend the SRD setup to the case with additional covariates and to the fuzzy
regression discontinuity (FRD) design, where the probability of receiving the treatment jumps
discontinuously at the threshold for the forcing variable, but not necessarily from zero to one.

In the SRD design, the focus is on average effect of the treatment for units with covariate
values equal to the threshold:

tsro = E[Yi (1) = Yi (0)| Xj =c].

Now suppose that the conditional distribution functidfgo) x (y|x) andFy 1) x (y|x) are con-
tinuous inx for all y and that the conditional first momergY; (1)| X; = x] andE[Y; (0)| X; = X]
exist and are continuous &t= c. Then

TSRD= U+ — t—, Whereu; =limm(x) and u_ =Ilimm(x).
xJc x1c

Thus, the estimand is the difference of two regression functions evaluated at boundary points.

We focus on estimatingsrp by separate local linear regressions on both sides of the thresh-
old. We view local non-parametric methods as attractive in this setting compared to methods
based on global approximations to the regression functaom lfigher-order polynomials ap-
plied to the full data set) because local methods build in robustness by ensuring that observa-
tions with values for the forcing variable far away from the threshold do not affect the point
estimates. Furthermore, in the RD setting, local linear regression estimators are preferred to the
standard Nadaraya—Watson kernel estimator because local linear methods have attractive bias
properties in estimating regression functions at the boundray énd Gijbels1992 and enjoy
rate optimality Porter 2003.

To be explicit, we estimate the regression functiof) atx as

a_(x) ifx<ec,
M (X) = [ (1)

ar(x) ifx>c,

where

. A . N Xi — X
(a_(x),ﬁ_(x))=arg(rl1%n§1xi<x-(Yi—a—ﬁ(Xi —X))Z'K( H )

whereK (.) is a kernel function described later, and h is the bandwidth, and,

A FRp—
G+ (X), (X)) = argor]"n}nzlxpx Y —a—B(Xi —x))2-K (th x)-
=t

Then, we can write the estimator fesrp as the difference in two regression estimators,
TsRD= fi4+ — fi—,
where the two regression estimators are
= QrTTgrﬁh(X) =a-(c) and 4= Ixirjgrﬁh(X) =a4(C).

The focus in this paper is on the optimal choice for the bandwidth

3. ERROR CRITERION AND INFEASIBLE OPTIMAL BANDWIDTH CHOICE

In this section, we discuss the objective function and derive the optimal bandwjgitnder
that criterion.
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3.1. Error criteria

The primary question studied in this paper concerns the optimal choice of the banbwidthe

current empirical literature, researchers often choose the bandwidth by either cross-validation or
ad hocmethods. Seélardle (1992, Fan and Gijbelg1992, andWand and Jonegl994) for
textbook discussions of cross-validation and related methodd,sdhwlig and Miller (2007 for

a specific implementation in the RD settings. Conventional cross-validation yields a bandwidth
that is optimal for fitting a curve over the entire support of the data. Typically, it leads to a
bandwidth choice that minimizes an approximation to the mean integrated squared error criterion
(MISE),

MISE(h) =E [ / (hh (X) — m(x))? f (x)dx:| ,

where f (x) is the density of the forcing variable. This criterion is not directly relevant for the
problem at hand: we wish to choose a bandwidth that is optimal for estimagigg This esti-
mand has two special features that are not captured in the MISE criterion.zEistdepends
onm(x) only through two values and specifically their difference. Second, both these values are
boundary values.

Our proposed criterion is based on the expectation of the asymptotic expansion,tate0nd
of the squared errdffsrp— rsrp)?. First, define the mean squared error:

MSE(h) = E[(Zsro— srD)’] = E[((i+ — 11+) = (A— — u-))?], (2)
and leth* be the optimal bandwidth that minimizes this criterion:
h* =arg nginMSE(h). 3)

This criterion is difficult to work with directly. The problem is that in many cases even as the
sample sizes become infinite, the optimal bandwidthvill not converge to zero. This is because
biases in different parts of the regression function away from the threshold may be off$etting.
In such cases, the optimal bandwidih can be very sensitive to the actual distribution and
regression function. Moreover, it does not seem appropriate to base estimation on global criteria
when identification is local. We therefore follow the standard bandwidth choice literature in
statistics by focusing on the bandwidth that minimizes a first-order approximation tqhSE
what we call the asymptotic mean squared error or AMSE

A second comment concerns our focus on a single bandwidth. Because the estigaand,
is a function of the regression function at two points, an alternative would be to allow for a
different bandwidth for these two points,. for estimatingu_, andh,. for estimatingu and
focus on an objective function that is an approximation to

MSE(h_, hy) = E[((2+(hy) — uy) — (A—(ho) — u))?, @)

instead of focusing on an approximation to M8E Doing so would raises an important issue.
We focus on minimizing mean squared error, equal to variance plus bias squared. Suppose that
for both estimators, the biasé8] i (h_)] — - andE[ x4+ (hs)] — u4, are strictly increasing

2. To be explicit, consider a simple example where we are interested in estimating a regression f(mgtion
at a single point, sag(0). Suppose the covariaté has a uniform distribution on [@]. Suppose the regression
function isg(x) = (x — 1/4)2 — 1/16. With a uniform kernel, the estimator fg(0) is, for a bandwidtth, equal to
2i:x; <h Xi/ 2i:x; <h 1. As a function of the bandwidth, the bias is equal tb2/3—h/4, conditional o, <h 1.
Thus, the bias is zero at= 3/4, and if we minimize the expected squared error, the optimal bandwidth will converge
to 3/4 as the sample size gets large.
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(or both strictly decreasing) functions of the bandwidth. Then, there is a furfetigm_) such

that the bias of the RD estimate, that is the difference between the above biases cancel out:
Ela-h)]—pu-)—E[a+(hy(ho)) — u4]) = 0. Hence, we can minimize the mean squared
error by lettingh_ get large (the variance is generally a decreasing function of the bandwidth)
and choosindi;. = h; (h-). Even if this does not hold exactly, the point is that a problem may
arise that even for large bandwidths, the difference in bias may be close to zero. In practice, it
is unlikely that one can effectively exploit the cancellation of biases for large bandwidths. This
would make it difficult to construct practical bandwidth algorithms. Therefore, in order to avoid
this problem, we focus in this discussion on a single bandwidth choice.

3.2. An asymptotic expansion of the expected error

The next step is to derive an asymptotic expansion of li$given equationd) and formally
define the asymptotic approximation AM8H. First, we state the key assumptions. Not all
these will be used immediately, but for convenience, we state them all here.

Assumption 3.1. (Y;, Xj), fori =1,..., N, are independent and identically distributed.

Assumption 3.2. The marginal distribution of the forcing variable; Xdenoted f-), is con-
tinuous and bounded away from zero at the threshold c.

Assumption 3.3. The conditional mean () = E[Y;|X; = X] has at least three continuous
derivatives in an open neighbourhood of=Xc. The right and left limits of the kth derivative of
m(X) at the threshold ¢ are denoted b)fb’\(c) and n'{_k) (©).

Assumption 3.4. The kernel K.) is non-negative, bounded, differs from zero on a compact
interval [0, a], and is continuous of0, a).

Assumption 3.5. The conditional variance function?(x) = Var(Y; | X; = x) is bounded in an
open neighbourhood of X% ¢ and right and left continuous at c. The right and left limit at the
threshold are denoted hy? (c) anda2(c), respectivelyg 2 (c) > 0 ands2(c) > O.

Aszsumption23.6. The second derivatives from the right and the left differ at the threshold:
er)(c) #* m(_)(c).

Now define the AMSE as a function of the bandwitith

2 2
AMSE(h) = C; -h*. (m? () —m@ ()% + NC_Zh -(U]f((c? + U]:((C?). (5)

The constant€; andC; in this approximation are functions of the kernel:

2

1 v2—v1v3 v2ﬂ0—2vlv271'1+1)27r2

Ci=-(2——) and Co=-2 o, (6)
4\ vovg—v? (v2vo —5$)?

where ~ o
vj =/ wWK(udu and 7 =/ ul K2(uydu.
0 0

The first term in equationdj corresponds to the square of the bias and the second term corre-
sponds to the variance. The expression for AMIBEElarifies the role that Assumption 3.6 will
play. The leading term in the expansion of the bias is of ondéfthe left and right limits of the
second derivative differ. If these two limits are equal, the bias converges to zero faster, allow-
ing for estimation ofrsrp at a faster rate of convergence. It is difficult to exploit the improved
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convergence rate that would result from this, in practice, because it would be difficult to estab-
lish sufficiently fast that two second derivatives are indeed equal, and therefore, we focus on
optimality results given Assumption 3.6. Note, however, that even if the second derivatives are
identical, our proposed estimator fesrp will be consistent.

An alternative approach would be to focus on a bandwidth choice that is optimal if the second
derivatives from the left and right are identical. It is possible to construct such a bandwidth choice
and still maintain consistency of the resulting estimatorzgsp irrespective of the difference
in second derivatives. However, such an bandwidth choice would generally not be optimal if
the difference in second derivatives is non-zero. Thus, there is a choice between a bandwidth
choice that is optimal undemf)(c) #* m(_z)(c) and a bandwidth choice that is optimal under

mf) (c) = m® (c). In the current paper, we choose to focus on the first case.

Lemma 3.1 (Mean Squared Error Approximation and Optimal Bandwidth).
(i) Suppose Assumptio3sl—3.5hold. Then,

MSE(h) = AMSE(h) +0p (h“ + ﬁ) .

(i) Suppose that also Assumpti8ré holds. Then,

| a2(c)+02(c) v -
hopt = NAMSE(h) = C - . N !
pt=argmi (h) =Ck (f(C).(mf)(c)—m(_z)(c))2 "

where G = (C2/(4-C1))Y°, indexed by the kernel ).

For the edge kernel, witK (u) = 1,y<1(1—|u[), shown byCheng, Fan and Marrqi1997 to
have optimality properties for boundary estimation problems, the const@ptdgge~ 3-4375.
For another commonly used kernel, the uniform kernel wttu) = 1,<1/2, the constant is
approximatelyCxk uniform =~ 5-40.

4. FEASIBLE OPTIMAL BANDWIDTH CHOICE

In this section, we develop an estimator for the bandwidth and discuss its asymptotic properties.
The proposed bandwidth estimator is fully data driven and based on substituting consistent esti-
mators for the various components of the optimal bandwidth given in equadiolt ifvolves a
number of choices for initial smoothing parameters in order to estimate these components. As is
typically the case with plug-in estimators, these choices are not unique and can be replaced by
others without affecting the asymptotic optimality of the procedure.

4.1. A simple plug-in bandwidth

A natural choice for the estimator for the optimal bandwidth estimator is to replace the six
unknown gquantities in the expression for the optimal bandwigdghin equation {) by consistent
estimators, leading to

Fopt = Ck - 62(9)+6£© l/S.N—1/5 (8)
opt = LK fA(c).(r‘ﬁf)(C)—m(_Z)(C))z .

One potential concern here, however, is that the first-order bias may be extremely small or van-
ish in finite samples. This could happen for instance in the constant additive treatment effects
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(CATES) case wherm(z)(x) (2)(x) for any x. In this case, the bandwidth that minimizes
first-order mean squares is infinite (the denominator term is zero in equa})én (

More generally, even if the true value of the bias term is not zero, the precision with which
we estimate the second derivati\mg) (c) and m® (c) is likely to be low. Thus, the estimated
optimal bandWidtH:lopt will occasionally be very large, even when the data are consistent with
a substantial degree of curvature. Thus, estimates of the bandwidth will be very imprecise and
will have a large variance across repeated data sets. Moreover, such a bandwidth may lead to
estimators forrsgp with poor properties because the true finite sample bias depends on global
properties of the regression function that are not captured by the asymptotic approximation used
to calculate the bandwidth.

4.1.1. Regularization. Motivated by the above concern that due to the error in the esti-
mation of the true curvature, the error in the estimation of its squared reciprocal could potentially
be large, leading to very large and ill-performing bandwidths, we modify the bandwidth estima-
tor using ideas from the regularization literat@rA.simple calculation establishes that the bias
in the plug-in estimator for the reciprocal of the squared difference in second derivatives is

1 1
E
|: (m(z) (c)— m® (0))? (m(z) (©— m® (C))Z]

3- (VP () + V(m? (c))) =
= N~<%).
( (m?(c) —m?(c))4 o

This implies that, for =3 (V(m(z) () —|—V(m(2) (c))), the bias in the modified estimator for the
reciprocal of the squared difference in second derivatives is of lower order:

1 1
. — o(N 2a )
[(m@)(c) m® ()2 +1 (m<2)<c>—m(_2)<0>>2} )

This in turn motivates the modified bandwidth estimator

. 62(c)+62(c) e —1/5
hopr = C @) 2@ o2 N ©)
(M} (©) — M2 ()2 +7_ +F1)

where
=39m? ) and f; =3P ().

Note that this bandwidth will not become infinite even in the cases when the difference in cur-
vatures at the threshold is zero.

3. This problem is not unique to our specific estimator. In the general case of estimating a regression at an interior
point, this occurs when the second derivative at that point is zero

4. As an aside, the same formal argument applies to the estimator of the density. If the estimated density is close
to zero, the bandwidth estimator might become unstable. However, in practice that is rarely a concern: if the true density
is so close to zero that one cannot estimate the density accurately at the threshold, it is unlikely that any estimates of
the discontinuity will be precise enough to be of interest. We therefore focus on the complications arising from the
difference in second derivatives being estimated to be close to zero.

5. Kalyanaramar{2008 has developed some theory about regularization in bandwidth selection in the different
context of estimated smooth regression functionals.
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4.1.2. Implementing the regularization. Consider first a simplification of the regular-
izationternt =r_+r,, wherer_ andr are three times the variance of the estimated curvatures
on the left and the right, respectively. To be explicit, we estimate the second deriv@(e)
by fitting a quadratic function to the observations wkh € [c, ¢+ h]. The initial bandwidth
h here will be different from the bandwidﬂﬁbpt used in the estimation akgrp, and its choice
will be discussed in Sectiof.2 Let Ny + be the number of units with covariate values in this
interval. We assume homoskedasticity with error variar@) in this interval. Let

1 i - 1
fjh+ =" Z (Xi —X)!, whereX=— Z Xi,

Np,+ Nh,+

c<Xj<c+h c<Xj<c+h

be thejth (centred) moment of th&; in the interval g, c+ h]. We can derive the following
explicit formula for three times the conditional variance of the curvature on the left, denoted by
r4, in terms of these moments:

o 12 a2(c)
+ — : ~ ~ ~ ~ .
Nh+ \ Zah+— (A2n+)2— (13n+)%/fon +

However, because fourth moments are difficult to estimate precisely, we approximate this ex-
pression exploiting the fact that for small the distribution of the forcing variable can be ap-
proximated by a uniform distribution orc[c + h], so thatuoh + ~ h2/12, u3n+ ~ 0, and

pan+ ~ h%/60. After substitutings 2 (c) for o2 (c) andé2(c) for o2(c), this leads to

r, = 220054 and similary ¢_ = 220080
T Np 4+-h% ° yr-= Np,—-h*

The proposed bandwidth is now obtained by adding the regularizationfterifi. + . to the
squared difference-in-curvature term in the bias term of MSE expansion:

62(©)+62(0) )1/5 N5, (10)

ﬁo =C . .
P ( f(©) (P () =M@ ()2 +F_+Ff)

To operationalize this proposed bandwidth, we need specific estimé(o}s&f(c), 65(0),
rﬁ(_z)(c), and rﬁf)(c). In the next section, we discuss a specific way of doing so, leading to
a completely data-driven bandwidth choice. This bandwidth estimator will be shown to have
certain optimality properties. It should be noted though that our proposed bandwidth estimator
is not unique in having these optimality properties. Any combination of consistent estimators
for f(c), a2(c), a2(c), m®(c), andm'?(c) substituted into expression@), with or without

the regularity terms, will have the same optimality properties. Within this class, our proposed
estimator is relatively simple, but the more important point is that it is a specific estimator, in the
same spirit as the Silverman rule-of-thumb bandwidth for non-parametric density estimation:
it gives a convenient starting point and benchmark for doing a sensitivity analyses regarding
bandwidth choice.

In addition, we will address the sensitivity of our bandwidth estimator to the choices made
in our algorithm in a simulation study. In general, we find the bandwidth selection algorithm to
be relatively robust to these choices. This is not surprising given that the presence of the power
1/5 in the expression for the optimal bandwidth: for example, doubling the estimates for both
a2(c) ands2(c) only increases the estimated bandwidth by a factor 2 1.18.
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4.2. An algorithm for bandwidth selection

The reference bandwidlfrbpt is a function of estimates fof (c), o2(c), af(c), m(_z)(c), and
mf)(c) and the kerneK (.). Here, we give a specific algorithm for implementation. In prac-
tice, we recommend using the theoretically optimal edge kernel, wki@ug= 1)yj<1-(1— |u]),
which also has consistently superior performance in simulations, although the algorithm is easily
modified for other kernels by changing the kernel-specific con€gntTo calculate the band-
width, we also need estimators for the density at the thresHdlt), the conditional variances
at the thresholds2(c) andai(c), and the limits of the second derivatives at the threshold from
the right and the Ieﬂm(_z)(c), mf) (¢). (The other components of equatidtO), f— andf, are
functions of these four components.) The first three functionals are calculated in Step 1, the last
two in Step 2. Step 3 puts these together with the appropriate kernel coBgtamiproduce the
reference bandwidthopt.

We make the following choices in this algorithm. First, an initial bandwidtfand a kernel
to estimate the densitfx (c) and the conditional outcome varianee&(c) ando?r(c). Second,
a pair of bandwidth$, — andh;  for estimating the second derivativafé_z) (0, mf) (c). We
choose these two bandwidths _ andhy 4 optimally given the third derivative, which in turn we
estimate globally. The choices fbi, the initial kernel, and the estimator for the third derivative
do not affect the asymptotic optimality properties of the bandwidth estimator, but they do affect
the finite sample properties.

Step 1. Estimation of density () and conditional variances?(c) and o-i (©).

First, calculate the sample variance of the forcing varia®e= > (Xi — X)2/(N —1). We now
use the Silverman rule to get a pilot bandwidth for calculating the density and variance at
The standard Silverman rule bf= 1.06-Sx-N~1/% is based on a normal kernel and a normal
reference density. We modify this for the uniform kernel e+l[1] and the normal reference
density and calculate the pilot bandwidthas follows:

hy = 1.84-Sx-N~Y5,

We assess the sensitivity of the choice of a uniform kernel in the final simulations. We choose
the uniform kernel because we are interested in a simple estimate of density, that is proportion
of observations near the threshold (which is a kernel density estimate with a uniform kernel).
Using alternative kernels would not affect the optimality properties in Theorem 4.1.

Calculate the number of units on either side of the threshold, and the average outcomes on
either side as

N N
Nhy,— = Z Ie—m<xi<co  Nhyt+= Z Le<xi <c+hss
i=1 i=1
— 1 = 1
Y- = > Y., and Y= N Y;.
hy,— i:c—hy<Xj<c ha,+ i:c<Xj<c+hy

Now estimate the density of; atc as
~ Nhy.— + Nhy +
f C) = 1, 1,
(© ToNh

and estimate the limit of the conditional variance¥pfjiven X; = x, atx = c, from the left and
the right, as

(11)

5’3(0) = —1 Z (Yi _Vhl,—)z, (12)

6102 J8qWBAON 7] U0 1s8nB Aq 681 £ESL/SEE/S/6.A0BNSqR-8]01118/PNISal/Wwod dno olWwapeoe)/:sdny WwoJj papeojumoq



942 REVIEW OF ECONOMIC STUDIES

and 1
oi(c)= I > Mi=Yn )2 (13)
ha,+ i:c<Xi <Cc+hy
The main property we will need for these estimators is that they are consistent for the density and
the conditional variance, respectively. They need not be efficient for the optimality properties in
Theorem 4.1. Because the bandwidth goes to zero afNaté®, Assumptions 3.2 and 3.5 are
sufficient for consistency of these estimators.

Step 2. Estimation of second derivativés(f) (c) and mh? (©).

First, we need pilot bandwidth® _ andh; . We base this on a simple, not necessarily con-
sistent, estimator of the third derivative wf(:) at c. Fit a third-order polynomial to the data,
including an indicator foX; > 0. Thus, estimate the regression function

Yi = y0471-1x5c + 72-(Xi =€) +73-(Xi —©)2+74-(Xi —)° + 4, (14)

and estimaten® (c) ash® (c) = 6-74. This will be our estimate of the third derivative of the
regression function. Note th&t® (c) is in general not a consistent estimatendf (c) but will
converge to some constant at a parametric rate.

However, we do not need a consistent estimate of the third derivatvéerte to obtain a
consistent estimator for the second derivative. Calcuiate, using thes 2 (c), 65(c)and f(c)

from Step 1, as
20\
o —
hoy =356 —————) N7V’ (15)
f(0)-(M3(c))?

52(c) v
hp. =356 ——"—" ) .NZY7,
’ f(c)-(M®(c))?

whereN_ and N, are the number of observations to the left and right of the threshold, respec-
tively. These bandwidthé, _ andhy ., are estimates of the optimal bandwidth for calculation
of the second derivative at a boundary point using a local quadratic and a uniform kernel. See the
Appendix for details. Again alternative consistent estimators for these second derivatives would
also lead to optimality for the corresponding bandwidth estirriﬁggr

Given the pilot bandwidth, , we estimate the curvatumﬁf) (c) by alocal quadratic fit. To
be precise, temporarily discard the observations other thaNtheobservations witlt < X; <
c+hgy 4. Label the new datd 4 = (Y1,...,Yn,,) andXy = (X1,..., Xn,,) each of length
No,+. Fit a quadratic to the new data. That is, Tet= [: T1 T2], where: is a column vector of
ones, and”j =((X1=0)),...,(Xny, —©)}), for j = 1, 2. Estimate the regression coefficients
A= (T/T)—lT/\?. Calculate the curvature aﬁf)(c) = 2-3. This is a consistent estimate of
mf) (c). To estimaten® (c), follow the same procedure using the data withhy — < X;j <c.

and

Step 3. Calculation of regularization termé&_ andf_ and calculation oﬁopt.
Given the previous steps, the regularization terms are calculated as follows:

216052 (c 216042 (c
rA+ = —0'_2() and f_= —0-_4() (16)

N2:+.h2,+ N2,—'h2,_

We now have all the pieces to calculate the proposed bandwidth:
~2 ~2 1/5
n o2(c)+o5(c B

hopt: CK'( = NG )A(2) + 2) - - ) .N 1/5’ (17)

f(0)-(M (c) — M2 (€))% + (F+ +1-))
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whereCk is, as in Lemma 3.1, a constant that depends on the kernel used. For the edge kernel,
with K (u) = (1—|u])-1jyj<1, the constant i€k =~ 3-4375.
Given the bandwidtigp, we estimatesrp as follows:

tsrp=Ilimrhy () —limrh; (x
sro=lim ot X) im rope )5
whererh, (x) is the local linear regression estimator defined in equatipn (

4.3. Properties of algorithm

For the bandwidth choice based on this algorithm, we establish some asymptotic properties.
First, the resulting RD estimatdgrp is consistent at the best rate for non-parametric regression
functions at a point$tone 1982. Second, the estimated constant term in the reference band-
width converges to the best constant. Third, we hale @987 type optimality result for the

mean squared error and consistency at the optimal rate for the RD estimate. The optimality result
implies that asymptotically the procedure with the estimated band\ﬁ'@tmerforms as well as

the infeasible procedure with the optimal bandwibigh:.

Theorem 4.1 (Properties oiﬁopt).
Suppose Assumptioisl—3.5hold. Then:

(i) (consistency) if Assumptidh6 holds, then

#sro— tsrD = Op(N™2/5). (18)
(ii ) (consistency) if Assumptidh6 does not hold, then

#sro— tsrD = Op(N /7). (19)
(iii ) (convergence of bandwidth)

hopt—h

—2 % = 0p(1), (20)
opt

and(iv) (Li's optimality):

MSE(ﬁopt) —MSE(hop)
MSE(hgpt) =% .

Note that when Assumption 3.6 holds, the convergence tat&/f) for 7srp is slower than

when Assumption 3.6 does not hold (nam@ly®/ 7). This is because failure of Assumption
(3.6) implies that the second derivatives from the left and right are equal, implying in turn that
the leading term of the bias vanishes, which, as one might expect, would improve convergence.

4.4. DesJardins—McCall bandwidth selection

DesJardins and McCa(R008 use an alternative method for choosing the bandwidth. They
focus separately on the limits of the regression function to the left and the right rather than on
the difference in the limits. This implies a focus on minimizing an objective criterion based on
the sum of the squared differences betwgenandu_ and betweerk . and

E[(fi4 — u)?+ (= — u=)?],
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instead of our criterion, which focuses on the squared difference betgeer i) and
(14— p-), ) ) , ) ,
E[((4+ — u4) = (- — 1)1 = E[(zsro— 7srD)]-

The single optimal bandwidth based on the DesJardins and McCall criterion is

S a2(©) +02(0) e N-L/5
M o mP 2 m@02) '

This will in large samples lead to a smaller bandwidth than our proposed bandwidth choice if the
second derivatives are of the same sign. DesJardins and McCall actually use different bandwidths
on the left and the right and also use a Epanechnikov kernel instead of the optimal edge kernel.
In the simulations and bandwidth comparisons below, we use the better performing edge kernel
to facilitate the comparison with our proposed bandwﬁlﬁﬁ.

4.5. Ludwig—Miller cross-validation

In this section, we briefly describe the cross-validation method uskddbyig and Miller(2005

LM from hereon), which we compare to our proposed bandwidth in the application and simu-
lations. The LM bandwidth is the only cross-validation bandwidth selection procedure in the
literature that is specifically aimed at the RD setting. NetandN_. be the number of observa-
tions with X; < candX; > c, respectively. Fod € (0, 1), let0_(d) andéd, (5) be thedth quantile

of the X; among the subsample of observations with< c and X; > c, respectively, so that

(é Ix; <a) > o-N_ ]
(.Z: le<x; sa) >0-Ny } .

Now the LM cross-validation criterion we use is of the form

0_(0) = arg n;in{ a

and

04+ (0) = arg r‘gin{a

N

CVs(h) = D" 1g_1-s)<x; <, (Vi —Mh(Xi))?.
i=1

(In fact, LM use a slightly different criterion function, where they sum up over all observa-
tions within a distancég from the threshold.) The estimator for the regression function here is
Mh(X) defined in equationl). A key feature ofih,(x) is that for values ok < c, it only uses
observations withX; < x to estimatem(x) and for values ok > c, it only uses observations
with X; > x to estimatem(x), so thatrh, (X;) does not depend oyj, as is necessary for cross-
validation. By using a value fa¥ close to zero, we only use observations close to the threshold
to evaluate the cross-validation criterion. Apart from the choice on needs to méakthefcon-

cern is that by using too small value &ifwe may not get a precisely estimated cross-validation
bandwidth. In a minor modification of the LM proposal, we use the edge kernel instead of the
Epanechnikov kernel they suggest. In our calculations, we us8.5.

Any fixed value ford is unlikely to lead to an optimal bandwidth in general, as it is im-
plicitly based on a criterion function that is appropriate for fitting the entire regression function
between th€1l — d)-quantile for the observations on the left and #hguantile for observations
on the right. Moreover, the criterion focuses implicitly on minimizing a criterion more akin to
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E[(fi4 — u4)%+ (i— — )] (with the errors in estimating _ and x . squared before adding
them up), rather than MSB) = E[((i4+ — 1+) — (- — u—))?] where the error in the difference
uy+ — u— is squared. As a result, even lettitig> 0 with the sample size in the cross-validation
procedure will not result in an optimal bandwidth.

5. EXTENSIONS

In this section, we discuss two extensions. First, we consider the FRD design and second, we
allow for the presence of covariates.

5.1. The fuzzy regression design

In the FRD design , the treatmeW is not a deterministic function of the forcing variable.
Instead, the probability PW = 1|X; = x) changes discontinuously at the thresholdrhe
focus is on the ratio

limy ¢ E[Yi [ Xi = X] = limxc E[Yi | X = X]

limy cE[W [Xi = X] = limxqc E[W [ X = X] .

TFRD =

In an important theoretical papétahn, Todd and Van Der Klaau{2001) discuss identification

in this setting and show that in settings with heterogenous effects, the estimand has an interpre-
tation as a local average treatment efféeti{ens and AngristL994. In the FRD case, we need

to estimate two regression functions, each at two boundary points: the expected outcome given
the forcing variableéE[Y; | X; = x] to the right and left of the thresholdand the expected value

of the treatment variable given the forcing varialilgV, | Xj = x] again both to the right and

left of c. Again, we focus on a single bandwidth, now the bandwidth that minimizes the mean
squared error to this ratio. Define

ry =IIME[Y; | X; =X] —IIME[Y;|X; =x] and tw =IME[W|X; =Xx]—ImE[W;|X; =X],
xlc XTc xJc e

with 7y and 7y denoting the corresponding estimators, so thalp = rv/tw and tprp =
7y /7w. In large samples, we can approximate the differeipe@ — trrp by

N R Y . A A
TFRD — TFRD = — (Ty — 7v) — — (Tw — tw) + 0p((Ty — 7v) + (2w — 7W)).
™ TW
This is the basis for the asymptotic approximation to the MSE arduad:

2
AMSEFRDm):clh“(T m@, (¢) —m?_(c)) — (M@, () —m( (c))) (22)

W

C 2
* Nhfz(c)( 5 (00 ©F0v_(©)+ VYV<UW+(c>+oW _(©)

2ty
— —3 (ovyw+(0) +UYW,—(C)))-
Tw
In this expression, the constariis andCz are the same as before in e(?uauﬁh (The second

derivatives of the regression functlomﬁY (©), mg( +(©), mW (c), andm My, +(c) are now de-
fined separately for the treatmewt and the outcom®'. In addition, the conditional variances
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are indexed by the treatment and outcome. Finally, the AMSE also depends on the right and left
limit of the covariance ofV andY conditional on the forcing variable, at the threshold, denoted
by oy w,+(c) andoyw, —(C), respectively.

The bandwidth that minimizes the AMSE in the fuzzy design is

hoptFrRD = Ck -N~/° (23)

x ( (02 ,(©)+03 _(0)+ trp(0d (0O + 08 _(C) — 2trro(ov w4 (€) + oy w,—(C)) )1/ °
£(©)-(MP, () —m{.(c)) — trro(MiE  (©) — MF)_(C)))2 '

The analogue of the bandwidth proposed for the SRD is

hoptFro = Ck -N~%/® (24)
( (63 ,.(0) +62_ () + 18rp(33, 1 (©) + 83, _(0) — 2érrD(6y Wi+ (©) + 6y w—(©)) )l/ °
f©)- (M, (©) — M7 (0)) — trro(TY)., () — My _ (€))% + Py.+ +Fv.— + terD(Pw.+ +Fw,-)

We can implement this as follows. First, using the algorithm described for the SRD case sepa-
rately for the treatment indicator and the outcome, calcdtass, f (c), 6 4 63 6-\,2\,+,&§V
1l (2) 4 (©), mg) (c),m (2) +(©,m (2) _(0), fy,4, fy,—, fw, 4, andfy,—. Second, using the initial Sil-
verman bandwidth use the dewations from the means to estimate the conditional covariances
oy w,+(c) andayw,—(C). Then, substitute everything into the expression for the bandwidth. By
the same argument as for the SRD case, the resulting bandwidth has the asymptotic no-regret
property.

In practice, this often leads to bandwidth choices similar to those based on the optimal band-
width for estimation of only the numerator of the RD estimand. One may therefore simply wish
to use the basic algorithm ignoring the fact that the regression discontinuity design is fuzzy.

5.2. Additional covariates

Typically, the presence of additional covariates does not affect the RD analyses very much. In
most cases, the distribution of the additional covariates does not exhibit any discontinuity around
the threshold for the forcing variable, and as a result, those covariates are approximately inde-
pendent of the treatment indicator for samples constructed to be close to the threshold. In that
case, the covariates only affect the precision of the estimator, and one can modify the previous
analysis using the conditional variance¥yfgiven all covariates at the threshokef (c|x) and
o2(c|x) instead of the variances?(c) ands2(c) that condition only on the forcing variable.

In practice, this modification does not affect the optimal bandwidth much unless the additional
covariates have great explanatory power (recall that the variance enters to the pbyyantl

the basic algorithm is likely to perform adequately even in the presence of covariates. For ex-
ample, if the conditional variances are half the size of the unconditional ones, using the basic
algorithm with unconditional variances will mean that the bandwidth will be off only by a factor
(1—1/2/%) or approximately @.7.

6. AN ILLUSTRATION AND SOME SIMULATIONS

6.1. Data

To illustrate the implementation of these methods, we use a data set previously analysed by
(2008 in a recent influential application of RD designs. Lee studies the incumbency advantage
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FIGURE 1
Density for forcing variable

in elections. His identification strategy is based on the discontinuity generated by the rule that
the party with a majority vote share wins. The forcing varia¥¥igs the difference in vote share
between the Democratic and Republican parties in one election, with the threshdd The
outcome variabld; is vote share at the second election. There are 6558 observations (districts)
in this data set, 3818 wittX; > 0, and 2740 withX; < 0. The average difference in voting
percentages at the last election for the Democrats wiss @iith a standard deviation of45.

Figurel plots the density of the forcing variable, in bins with widt®®. Figure2 plots the
average value of the outcome variable, in 40 bins with wid@®bQagainst the forcing variable.
The discontinuity is clearly visible in the raw data, lending credibility to any positive estimate
of the incumbency effect. The vertical line indicate the optimal bandwidth calculated below.

6.2. Imbens-Kalyanaraman (IK) algorithm on Lee data

In this section, we implement our proposed bandwidth on the Lee data set. For expositional
reasons, we gave all the intermediate steps.

Step 1. Estimation of density @) and conditional variance 2(0).
We start with the modified Silverman bandwidth,

hy = 1.84. Sx - N1/ = 1.84.0.4553 6558 1/°> = 0.1445.

0.8

0.6

0.4

democratic vote share

0.2

1 1 1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
difference in vote share last election

FIGURE 2
Regression function for democratic vote share
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Thgre areNp,,— = 836 units with values foK; in the interval F-h1, 0), with an average outcome
of Y, — = 04219 and a sample variance Eﬁ’hl’_ = 0-1047, and Ny, + = 862 units with

values forX; in the interval [Qh;], with an average outcome Yp, = 0-5643 and a sample
variance ofS7;, , =0-1202Z. This leads to

Nnj—+Nn,+ 8364862
2Ny 2x6558x 0-1445

f(0) = — 0-8962

and
62(0)=Sf,, - =01047 and 6£(0) = f, . = 01202

Step 2. Estimation of second derivativéss(f) (0) and @ ).

To estimate the curvature at the threshold, we first need to choose bandidtrendhy _.
We choose these bandwidths based on an estima#é3i0) obtained by fitting a global cubic
with a jump at the threshold:

Yi = yo4y1-1x5c+ 72-(Xi =€) +73-(Xi — )2+ 74-(Xi —0)° + 4.

The least squares estimate faris y4 = —0-1686, and thus, the third derivative at the threshold
is estimated ag\® (0) = 6-54 = —1.0119. This leads to the two bandwidths

52(0)
f(0) x (M®(0))2

1/7
hot = 3~56><( ) x N;¥"=06057 and hy_ =0.6105.

The two pilot bandwidths are used to fit two quadratics. The quadratic to the right of 0 is fitted
on [0, 0-6057], yieldingrﬁf) (0) = 0-0455 and the quaderatic to the left is fitted 6r0.6105 0]
yieldingm® (0) = —0-8471.

Step 3. Calculation of regularization term&_ andf_ and calculation oﬁopt.

Next, the regularization terms are calculated. We obtain

2160x 62(0 : 2160x 62(0
_ 2160x5(0) _ 2160x 01202 _ e ang p — 2L60XO) 4560

Pe= -
*7 Ny xhi, ~ 2814x 06057 No,— x Pt _

Now we have all the ingredients to calculate the optimal bandwidth under different kernels and
the corresponding RD estimates. Using the edge kernel@yite- 3-4375, we obtain

~D N 1/5
hopt = Ck ( - 5 = (O)AJ{Z;” (OZ — ) N~Y° =0.2939.
£(0)- (M7 (0) =M= (0)2 + (F1 +7-))

6.3. Thirteen estimates for the Lee data

Here, we calculate 13 estimates of the ultimate object of interest, the size of the discontinuity
in m(x) at zero. The first eight are based on local linear regression and the last five on global

polynomial regressions. The first is based on our proposed bandwidth. The second drops the reg-

ularization terms. The third uses a normal kernel and the corresponding Silverman bandwidth
for estimating the density function at the threshdig £ 1.06- S, - N~1/%). The fourth estimates
separate cubic regressions on the left and the right of the threshold to derive the bandwidth for
estimating the second derivatives. The fifth estimates the conditional variance at the threshold
assuming its left and right limit are identical. The sixth uses a uniform kernekdnZ, 1/2]
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TABLE 1
RD estimates and bandwidths for Le&ta

Procedure h TSRD (Standarcerror)
ﬁopt 0-2939 00799 00083
No regularization B042 00802 00082
f (c) estimated using normal kernel -2938 00799 00083
Third-order polynomial separate on left and right 246 00774 00089
Homoskedastic variance -2940 00799 00083
Uniform kernel 04617 00806 00087
DesJardin—MccCall (3105 00804 00081
LM cross-validation § = 0-5) 09750 00788 00056
Linear Global 01182 00056
Quadratic Global ®519 00071
Cubic Global 01115 00093
Quartic Global 00766 00113
Quintic Global 00433 00132

instead of the optimal edge kernel. The seventh bandwidth is based on the DesJardin—McCall cri-
terion, where we modify the procedure to use the edge kernel instead of the Epanechikov kernel
that DesJardin—McCall use. The eighth bandwidth is based on the LM cross-validation criterion.
The last five estimates faggrp are based on global linear, quadratic, cubic, quartic, and quintic
regressions. The point estimates and robust standard errors are presented In Talbieesti-

gate the overall sensitivity of the point estimates to the bandwidth choice, Bgliots the RD
estimategsrp(h), and the associated 95% confidence intervals, as a function of the bandwidth,
for h between 0 and 1. The solid vertical line indicates the optimal band\/\frqyﬂ:(z 0-2939).

6.4. A small simulation study

Next, we conduct a small Monte Carlo study to assess the properties of the proposed bandwidth
selection rule in practice. We consider four designs, the first based on the Lee data, the second
on a very simple low-order polynomial, and the third and fourth on a case of constant average
treatment effect.

0.05

increase in democratic vote share

|

[

|

|

|

| Il 1 L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
difference in vote share last election

FIGURE 3
RD estimates and confidence intervals by bandwidth
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In the first design, based on the Lee data, we use a Beta distribution for the forcing variable.
Let Z have a beta distribution with parameters= 2 and$ = 4, then the forcing variable is
X =2.Z—1. The regression function is a fifth-order polynomial, with separate coefficients for
Xi <0andX; > 0, with the coefficients estimated on the Lee data (after discarding observations
with past vote share differences greater th&®@nd less thar-0-99), leading to

048+ 1-27x + 7-18x2 4+ 20-21x3 + 21.54x* + 7-33x®>  if x <O,

Meee(X) = .
[ 0-52+0-84x — 3-00x? + 7-99%> — 9.01x* + 3.56x°>  if x > 0.
The error variance is? = 0-129%. We use data sets of size 500 (smaller than the Lee data set
with 6558 observations, but more in line with common sample sizes).
In the second design, we use the same distribution for the forcing variable as in the first
design. We again have 500 observations per sample, and the true regression function is quadratic
both to the left and to the right of the threshold, but with different coefficients:

3x2 if x <0,

4x2  if x >0,

MguadX) = {

implying the data-generating process is close to the point where the bandhgfigithfairly large
(because the left and right limit of the second derivative are 6 and 8, respectively), and one may
expect some effect from the regularization. The error variance is the same as in the first design,
02 =0.129%.

Under the third design, we have a constant average treatment effect, and consequently,
the second derivatives on both sides of the threshold are equal. Here, one might expect the
DesJardins—McCall bandwidth to work particularly well because it assumes equality of the sec-
ond derivatives. We base the design on the Lee data, where we use the following regressions,
where note that the regression for the treated group (right of the threshold) is an additive shift
(of 0-1, approximately the discontinuity in the original sample) of the treatment effect regression
for the control (left of threshold). In other words, we test a scenario where the treatment effect
is constant across values of the forcing variable.

MCATE() (X) = 0-424-01- 1450+ 0-84x — 3-00x% + 7-99x3 — 9.01x* 4- 3.56x°.

Our fourth design is a modification of the above. We look at the constant additive treatment
effect case where the curvature at the threshold is zero on both sides (for instance, in locally
linear regression functions). To do this, we simply uggxre() (X), but set the coefficients on
the squared term to zero:

MCATE@) (X) = 0-424 0-1- 1450 + 0-84x + 7-99x% — 9.01x* + 3.56x°.

The other parameters for the data generating process are set as in the simulations based on

the Lee data. In the last two cases, one might expect substantial effects from regularization

because the infeasible optimal bandwidth in both cases is infinite. Moreover, in the last case, even

methods that are based on separately estimating left and right end points will need regularization.
In Tables2 and3, we report results for the same estimators as we reported in Tdbtehe

real data. We include one additional bandwidth choice, namely the infeasible optimal bandwidth

hopt, Which can be derived because we know the data generating process. In Zaipigs,

we present for both designs in each case the mean (Mean) and standard deviation (S.D.) of the

bandwidth choices and the bias (Bias) and the root mean squared error (RMSE) of the estimator

for z.
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TABLE 2
Simulations, 5000eplications

h TSRD
Mean S.D. Bias RMSE
Lee design
hopt (infeasible) 0166 0017 0060
Ropt 0-480 0058 0040 0054
No regularization a57 0680 0037 0051
f (c) estimated using normal kernel 480 0058 0040 0054
Third-order polynomial separate on left and right -386 0037 0038 0056
Homoskedastic variance -4Y8 0058 0041 0054
Uniform kernel 0377 0046 0034 0056
DesJardins—MccCall 856 0134 0037 0051
LM cross-validation§ = 0-5) 0423 0115 0037 0054
Linear Global 0048 0055
Quadratic Global 019 0043
Cubic Global 087 0100
Quartic Global 028 0068
Quintic Global 0001 0074
Quadratic design

hopt (infeasible) %418 0003 0037
ﬁopt 0-422 0070 0006 0036
No regularization A73 0268 0015 0045
f (c) estimated using normal kernel 422 0070 0006 0036
Third-order polynomial separate on left and right -3 0060 0003 0040
Homoskedastic variance 421 0070 0006 0036
Uniform kernel 0332 0055 -0041 0067
DesJardins—McCall Q23 0010 —0002 0049
LM cross-validation§ = 0-5) 0220 0023 —-0002 0050
Linear Global 0245 0251
Quadratic Global —000 0037
Cubic Global —E000 0048
Quartic Global —-@00 0060
Quintic Global —0000 0073

First, consider the design motivated by the Lee data. All feasible bandwidth selection meth-
ods combined with local linear estimation perform fairly similarly under this design as far as
7srp is concerned and close to the infeasiblg:. There is considerably more variation in the
performance of the global polynomial estimators. The quadratic estimator performs very well,
but adding a third-order term increases both bias and RMSE. The quintic approximation does
very well in terms of bias, not surprising given the regression that generated the data was a
fifth-order polynomial but has a higher RMSE than the local methods.

In the second design, the regularization matters, and the bandwidth choices based on dif-
ferent criterion functions perform worse than the proposed bandwidth in terms of RMSE, in-
creasing it by about 35%. The global quadratic estimator obviously performs well here because
it corresponds to the data generating process, but it is interesting that the local linear estimator
based OI’ﬁopt has a RMSE very similar to that for the global quadratic estimator.

In the third and forth designs, as expected, regularization matters even more. Again the band-
width choices based on different criterion functions perform worse. In particular, in the case
where the regression function has no curvature at the threshold, methods based on estimating
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TABLE 3
Simulations, 5000aplications

h TSRD
Mean S.D. Bias RMSE
CATE(1), non-zero curvature
hopt (infeasible) 00 -3758 3767
ﬁopt 0-174 0016 -0008 0058
No regularization @57 0206 —-0067 0303
f (c) estimated using normal kernel 104 0016 —-0008 0058
Third-order polynomial separate on left and right -1es 0013 —0007 0059
Homoskedastic variance -A¥5 0016 —0009 0058
Uniform kernel 0137 0013 0003 0069
DesJardins—McCall Q06 0045 -0015 0065
LM cross-validation§ = 0-5) 0113 0013 -0003 0073
Linear Global —3758 3767
Quadratic Global B67 1373
Cubic Global -07 0214
Quartic Global @15 0062
Quintic Global —0000 0074
CATE(2), zero curvature

hopt (infeasible) 00 -3453 3462
ﬁopt 0-173 0016 -0007 0057
No regularization @52 0184 —0055 0260
f (c) estimated using normal kernel 103 0016 —-0007 0057
Third-order polynomial separate on left and right -168 0013 —0006 0058
Homoskedastic variance Ay2 0016 —-0007 0057
Uniform kernel 0135 0013 —0003 0068
DesJardins—McCall 239 0073 -0026 0095
LM cross-validation§ = 0-5) 0120 0011 —-0004 0069
Linear Global —-3453 3462
Quadratic Global B65 1371
Cubic Global —-09 0216
Quartic Global @15 0061
Quintic Global —0000 0073

end points separately perform poorly (RMSE nearly the size of the RD estimate itself). This
is partly explained by the fact that in this case, these bandwidth choices would benefit from
regularization as well. Note that across all four simulations, the standard deviation of the esti-
mated bandwidth with regularization is lower than that of the bandwidth without regularization,
sometimes by a factor 10. This is because regularization has the added benefit of reducing the
instability of the estimated bandwidth.

7. CONCLUSION

In this paper, we propose a fully data-driven, asymptotically optimal bandwidth choice for RD
settings. Although this choice has asymptotic optimality properties, it still relies on somewhat
arbitrary initial bandwidth choices. Rather than relying on a single bandwidth, we therefore
encourage researchers to use this bandwidth choice as a reference point for assessing sensitivity
to bandwidth choice in RD settings. The bandwidth selection procedures commonly used in
this literature are typically based on different objectives, for example on global measures, not
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tailored to the specific features of the RD setting. We compare our proposed bandwidth selection
procedure to these and find that our proposed method works well in realistic settings, including
one motivated by data previously analysed.ee (2008.

APPENDIX

To obtain the MSE expansions for the RD estimand, we first obtain the bias and variance estimates from estimating a re-
gression function at a boundary poiRtin and Gijbel$1992 derive a version of Lemma A1 under different assumptions

(such as thin tailed rather than compact kernels) and hence, their proof is less transparent and not easily generalizable
to multiple dimensions and derivatives. The proof we outline is baséRiuppert and WanL994 but since they only

cursorily indicate the approach for a boundary point in multiple dimensions, we provide a simple proof for our case.

Lemma Al (MSE for Estimation of a Regression Function at the Boundary). Suppose€i) we have N pairs
(Yi, Xj), independent and identically distributed, with X 0, (i) m(x) = E[Y; | X; = X] is three times continuously
differentiable, (iii) the density of X f(x), is continuously differentiable at x¢ 0, with f(0) > 0, (iv) the conditional
varianceaz(x) = Var(Yj|Xj = x) > 0is bounded, and continuous atx0, (v) we have a kernel KR* - R, with
K(u)=0foru>u, andfél K (u)du =1, and define I§(u) = K (u/h)/h. Definex = m(0), and

N
(fih. Br) = argmin>_ (Y — s = B-X)? K (X))
whiz
Then
E[lX1, ..., Xn] = 1 = C7 2m@ ©h? + op(h?), A1)
20 1
V(iilX1,..., XN) = Co f";c)(,\l)thop (m) (A2)
and
20 1
E[(2 — £)?X1, .., Xn] = C1(mP (0))*h* + C; f"(o)(N) - +0p (h4+ m) , (A3)

where the kernel-specific constants &hd G are those given in Lemnil.

Before proving Lemma Al, we state and prove two preliminary results.

Lemma A2. Define F = % ZiNzl Kh (X )Xij . Under the assumptions in Lemmaa|, (i) for non-negative integeyr,
Fj =hl £ (Owj +op(hl) =hl(Ff +op(1),

withvj = [§°t) K(HdtandF?* = f (v and (i) if j > 1, F; =op(hi—D.

Proof. F; is the average of independent and identically distributed random variables, so
Fj = E[Fj]+ Op(Var(F))Y/?).

The mean ofj is, using a change of variables franto x = z/h,
E[Fj]z/o %K(E)ZJ f(z)dz:hJ'/O K (x)xJ f (hx)dx
. o0 . . e} . —
:hJ/ K(x)fo(O)dx-'th'l/ K(x)xl+1de
0 0

=hl f ) +0(h*h.
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The variance ofj can be bounded by

1 _22j_l Xi22j_1OO Z\\2 o
N ELKn(Xi)2X; ]—thE[(K (W)) X; }_th/o (k(5)) 2 @z

By a change of variables fromto x = z/ h, this is equal to

h2i-1 roo , h2i-1 no 2 .
N /0 (K(x))2~x21f(hx)dx=0( N )=0((th/2))=o((hJ)2).

Fj =E[Fj]l+0p(h)) =hl f Q) +0p(h}) =hl.(f O] +0p(D)).

Hence,

Il
LemmaA3. LetGj =& >N KA(X; )Xij &2(X;j). Under the assumptions from Lemua,

Gj =h17152(0) f (O)7j (1 +0p(2)), with 7] =/°Ot1 K2(t)dt.
0

Proof. This claim is proved in a manner exactly like Lemma A1, here using in addition the continuity of the conditional

variance function. ||

Proof of Lemma AlDefine R = [: X], where: is a N-dimensional column of ones, define the diagonal weight m¥ttix
with (i,i)th element equal t&p, (X;) and definee; = (1 0)’. Then
M) = i = &, (RWR™IRWY.

The conditional bias i3 = E[M(0)|X1,..., Xn] —m(0). Note thatE(h(0)|X) = & (R'W R~IR'WM, whereM =
(M(X1), ...,m(XN)). Letm® (x) denote théth derivative oim(x) with respect tex. Using Assumptior(ii ) in Lemma
Al, a Taylor expansion ah(X;) yields

1

m(X;) = m©0) +mP ) X; + ém(z) OX?+Ti,
where
ITi1 < supim® GO XPI.
X

Thus, we can write the vectdf as

m(0)
M= R(m(l)(O)) +S+T,

where the vectoS hasith element equal t§ = m® (O)Xi2/2, and the vector has typical element;. Therefore, the
bias can be written as

B=¢€,(RWRIRWM-m(0) =€ (RWRIRW(S+T).
Using Lemma A2, we have

1, \1 (FoF - 1 Fo —F1
(WRWR) - T FoFa—F2\ _
Fi Fo oF2 1 F1 Fo

| mEemren (g roeo)
-+ (e o) (e +on)

_ (vovz—vvzf)f<0)+°”(1) _(vovz—‘;lf)f(O)h+0p(%)
~ oo +ov (7) % (%)

[ ©e® Op(%)

\on (i) o0 (52)
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Next,
F3 op (h?
‘%R/WT‘ :supm(3)(x).( ) < ( p( )) _
x Fa op(h®)
Thus,
& (RWR™'RWT = 0p(1)0p(h?)+Op (%) op(h®) = 0p(h?),
implying
B=¢,(RWRIRWS+op(h?).
Similarly, Lo
F 2N Kp(xi)x2 voh2 4 0p(h?)
%(R/WS:%m(z)(O) N &i=1 A :%m(z)(O)f(O) P .
2 Kn(Xi)X3 v3hd + op (h3)
Therefore,

2
1 p—
B =& (RWR™IRWStop(h?) = -m@ ) 222 )n2 4 op(r?).
2 vy — vy

This finishes the proof for the first part of the result in Lemma A1, equatioh)(
Next, we consider the expression for the conditional variance in equatiah (

V =V(h(0)[Xy,..., Xn) = €, (RWRTIRWEWRRWR ey,

whereX is the diagonal matrix witli, i )th element equal t02(X;).
Consider the middle term
1 & 2 KEXio2(Xi) & X KE(Xi)Xia2(X) Go Gy
N RWXIWR= = .

A2 KR Xia2(Xi) & 3 KR(X)XPa2(Xi) G1 G

1 S F2 —F1\[(CGoCG1\[/ F2 R
NV=————¢ e
(FoF2—F{) —-F1 Fo G1 G2 -F Fo
_ F2Gg—2F1F»G1 +F2G;
(FoF2— F})2

Thus, we have

Applying Lemmas A2 and A3, this leads to

v 0.2(0) (v%no—ZUlvgn1+v32_7r2)+o ( 1 )
- . pl—)-
This finishes the proof for the statement in equati@r2). The final result in equatiorn’(3) follows directly from the

first two results. ||
Proof of Lemm&.1  Applying Lemma Al to theN units with X; > cimplies that

~ 1/2
Elii+ — 41X, ..., Xn] = Cy “m{Z (©h? + op(h?),

and

v Xer Xn) = Cpe 2@ g (i)
Ht = U4 [AL -, AN) = 2fX|X2c(C)N+h p Nyh)

BecauseN+ /N = pr(X; > ¢)+ Op(1/N), and fx x>c(x) = f(x)/Pr(X; > ¢), it follows that

2
. ) 1
V(i —pu41X1, ... XN) :sz +0p (m)

Conditional onX4, ..., XN, the covariance betwegh; and/i_ is zero, and thus, combining the results from applying
Lemma A1 also to the units wit; < c, we find
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E[(fsrRp— tSRD)?1X1. . XN] = E[(it4 — fim — (4 — =))?(X1. ..., XN]

=E[(fi4 — #4)21X1s oo, XN]HE[(1— — 1 =)2[X1, ..., XN]
—2E[fig — 4 1X1, o os XNTELi— = = 1Xq, ..., XN]

2 2
=Cyh* (m?() - m(_z)(c))2+ C2~(U+(C) + J_(C))-I-Op (h4+ i)

Nh'\ T " f©o

proving the first result in Lemma 31.
For the second part of Lemma 3.1, solve

. o?(©)  02(0)
hopt = arg T]”'(Clh4(mf) ©-m® (C))2+C2( foNR T TN h))

which leads to 15
ys [ 720 20
hopt = (&) 19 "1 N—L/5,
mP (c) -m? (0))2

Il
Motivation for the bandwidth choice in equatiotf] in Step 2 of bandwidth algorithm:
Fan and Gijbel$1996 Theorem 3.2) give an asymptotic approximation to the MSE for an estimator oftttierivative
of a regression function at a boundary point usingtla order local polynomial (using the notation in Fan and Gijbels).
Specializing this to our case, with the boundary paird uniform one-sided kerné (t) = 1p<t<1 and interest in the
second derivative using a local quadratic approximatiog p = 2), their MSE formula simplifies to

2
L2, 3202 )
MSE_(gKl(m+ (©)*h*+4Ko g ) (1+0p(1)).
Here,
Klz/tsK*(t)dt and Kg:/(K*(t))zdt,
where
0 r [ HO U1 K12 1 . 1
O=(0] |uuzns | (1)Ko, wihux= [aK@da= .
1 t2 (k+l)
H2 U3 14
so that 1
o\ /1 1213\ " /1
K*ty=[0] [ 1/21/31/4 t | -K(t) = (30— 180 +180?)-1g 1),
1) \1/31/41/5 t2
and thereforeKq = 1.5 andK, = 180. Thus,
MSE = }(m(3)(c))2h2+720i0£(c) (1+0p(1))
“\at Nh® f.(c) L

Minimizing this overh leads to

17 1/7
ha.+ =72001/7.(”42“(C)) N;1/7~3.56-(U“2“(C)) NG
’ f©mP(c)? tomP(c)?

Proof of Theorem 4.1. Before directly proving the three claims in the theorem, we make some preliminary observations.

Write 15

72(©)+02(c)
2
tor (P e-m?e)")

hopt = Copt' N _1/5, with Copt = CK .

6102 J8qWBAON 7] U0 1s8nB Aq 681 £ESL/SEE/S/6.A0BNSqR-8]01118/PNISal/Wwod dno olWwapeoe)/:sdny WwoJj papeojumoq



IMBENS & KALYANARAMAN OPTIMAL BANDWIDTH CHOICE 957

and

62(0)+62(c) )1/ 5

ﬁopt = éopt- N _1/5, with éopt = CK (
£(0)- (P (©) — P ()2 +£4 +F_)

First, we show that the various estimates of the functlonaﬁom 62(c), 6 (o), f(c), rh(f)(c) andm(z)(c) converge
to their counterparts i€opt, o E(c), o-+(c), f(c), m(z) (o) andm(z) (c). Considerf (c). This is a histogram estimate of
density aftc, with bandwidthh = C N=Y/5. Hence f(c) is consistent forf (c) if f_(c) = f(c) = f(c), if the left- and
right-hand limit are equal and fqrf— (c) + f4(c))/2 if they are different.

Next, considers2(c) (and JZ(C)) Because it is based on a bandwidth= C-N~1/5 that converges to zero, it is
consistent for 2 (¢) if 02 (c) = 02 (c) = 5 2(0).

Third, conS|derrn(2) (c). This is a local quadratic estimate using a one- S|ded uniform kernel. Ffamgnd Gijbels
1996 Theorem 3.2), it follows that to guarantee con&stenoynﬁ? (c) for m (c) we need both

ha.+ =op(l) and (N h‘;’)+)_1 =o0p(D). (A.4)

Let mg be the probability limit of® (c). This probability limit need not be equal 03 (c), but it will exist under the
assumptions in Theorem 4.1. As long as this probability limit differs from zero, lhen= Op(N~Y7), so that the
two conditions in equationX. 4) are satisfied anth )(c) is consistent fom(z) (©).

Fourth, considerf; = 21602 £(©/(Ng, +h2 +) The numerator converges to Zb@c) The denominator is
Np-h3  =C-(N-hp 4)-N~ 4/7(1+op(1)) =C-N%7(1+0p(1)), so that the ratio i€-N~2/7(1+0p(1)) = 0p(1).

A S|m|Iar result holds for_.

Now we turn to the statements in Theorem 4.1. We will prove (iii), then (iv), and then (i) and (ii). First, consider
(iii). If m(z)(c) m (c) differs from zero, therCopt is finite. Moreover, in that cas(emf)(c) (_ (c))2+r++r_
converges tc(m(z) (c)—n (_2) (c))2, andCopt converges tCopt. These two implications in turn lead to the result that
(hopt— hopt)/ hopt = (Copt— Copt)/ Copt = 0p(1), finishing the proof for (iii).

Next, we prove (iv). Becauseopt = Copr N ~1/5, it follows that

1 _
MSE(hopt) = AMSE(hopt) 4 0p (hg‘pt+ Wt) = AMSE(hopt) +0p(N~4/5).
Top

BeCaUSéth = (éopt/Copt)'CoptN -1/5 andéop[/Cth — 1 it follows that
MSE(Ropt) = AMSE(hopt) +0p(N~4/5).

Therefore,
N45.(MSE(hopt) — MSE(hopt)) = N¥/-(AMSE(Ropt) — AMSE(hopt) +0p (1),
and
MSE(hopt) — MSE(hopt)  N¥/5-(MSE(hopt) — MSE(hopt)
MSE(hopt) B N4/5.MSE(hopt)
_ N#/5.(AMSE(hopt) — AMSE(hopt)) +0p (1)
N4/5-AMSE(hopt) + Op(l)
N#/5.(AMSE(hopt) — AMSE(hopt))

= op(1).
N4/5.AMSE (hopt) +op@

Becausd\l4/5~AMSE(hopt) converges to a non-zero constant, all that is left to prove in order to establish (iv) is that
N45.(AMSE(hopt) — AMSE(hopt)) = 0p(1). (A5)
Substituting in, we have

N#/5.(AMSE (opp) — AMSE(hopy) = C1-(m? () = m? (€))% (N¥Phopp* — NY5hopn®)

Co _ Co . U.%_(C) UE(C) _
+(Nl/5'hopt N1/5~ﬁopt)( f(© * f(c) =op®

becauseN/Shopt — N1/Shgpt = Copt— Copt = 0p(1), so that equationi(.5) holds, and therefore, (iv) holds.
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Now we turn to (i). If Assumption 3.6 hold§iopt = CoptN /5, with Copt — Copt, @ non-zero constant. Then, Lemma
3.1 implies that MSEhop) is Op(hgy+ N~1hgk) = Op(N=4/5) so thatisrp— rsrp = Op(N~2/%). Next con-
sider (ii). If Assumption 36 does not hold amn(f (c)— mf)(c) = 0. Becausé, | = CN~Y/7 it follows thatr =

c szih—4 = CN~2/7(1+0p(1)) (with each time different constan®), it follows thatfgpt = C(N%/7)/SN=1/5 =
CN~1/7, 50 that the MSEh) = CN=%7 + EN—6/7 = CN=%/7 (note that the leading bias term is n@®(h3) so that
the square of the bias 8(h®) = O(N~%/7)) and thusisrp— rsrp = Op(N~%/7), and thus the result holds. |
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