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We investigate the choice of the bandwidth for the regression discontinuity estimator. We focus
on estimation by local linear regression, which was shown to have attractive properties (Porter, J. 2003,
“Estimation in the Regression Discontinuity Model” (unpublished, Department of Economics, University
of Wisconsin, Madison)). We derive the asymptotically optimal bandwidth under squared error loss.
This optimal bandwidth depends on unknown functionals of the distribution of the data and we propose
simple and consistent estimators for these functionals to obtain a fully data-driven bandwidth algorithm.
We show that this bandwidth estimator is optimal according to the criterion of Li (1987, “Asymptotic
Optimality for Cp, CL , Cross-validation and Generalized Cross-validation: Discrete Index Set”,Annals
of Statistics, 15, 958–975), although it is not unique in the sense that alternative consistent estimators for
the unknown functionals would lead to bandwidth estimators with the same optimality properties. We
illustrate the proposed bandwidth, and the sensitivity to the choices made in our algorithm, by applying
the methods to a data set previously analysed by Lee (2008, “Randomized Experiments from Non-random
Selection in U.S. House Elections”,Journal of Econometrics, 142, 675–697) as well as by conducting a
small simulation study.

Key words: Optimal bandwidth selection, Local linear regression, Regression discontinuity designs,
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1. INTRODUCTION

Regression discontinuity (RD) designs for evaluating causal effects of interventions, where as-
signment to the intervention is (partly) determined by the value of an observed covariate exceed-
ing a threshold, were introduced byThistlewaite and Campbell(1960). SeeShadish, Campbell
and Cook(2002) andCook(2008) for a historical perspective. A recent surge of applications in
economics includes studies of the impact of financial aid offers on college acceptance (Van Der
Klaauw, 2002), school quality on housing values (Black, 1999), class size on student achieve-
ment (Angrist and Lavy, 1999), air quality on health outcomes (Chay and Greenstone, 2005),
incumbency on re-election (Lee, 2008), and many others. Recent important theoretical work has
dealt with identification issues (Hahn, Todd and Van Der Klaauw, 2001, HTV from hereon), op-
timal estimation (Porter, 2003), tests for validity of the design (McCrary, 2008), quantile effects
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(Frandsen, 2008; Frölich and Melly, 2008), and the inclusion of covariates (Frölich, 2007).
General surveys includeImbens and Lemieux(2008), Van Der Klaauw(2008), andLee and
Lemieux(2010).

In RD settings, analyses typically focus on the average effect of the treatment for units with
values of the forcing variable close to the threshold, using local linear, or global polynomial
series estimators.Fan and Gijbels(1992) andPorter(2003) show that local linear estimators are
rate optimal and have attractive bias properties. A key decision in implementing local methods
is the choice of bandwidth. In current practice researchers use a variety ofad hocapproaches
for bandwidth choice, such as standard plug-in and cross-validation methods from the general
non-parametric regression literature (e.g.Fan and Gijbels, 1992, Härdle, 1992, Wand and Jones,
1994). These are typically based on objective functions which take into account the performance
of the estimator of the regression function over the entire support and do not yield optimal
bandwidths for the problem at hand. There are few papers in the literature that use bandwidths
which focus specifically on the RD setting (Ludwig and Miller, 2007; DesJardins and McCall,
2008; see discussion later in the paper), and none with optimality properties. In this paper, we
build on this literature by (i) deriving the asymptotically optimal bandwidth under squared error
loss, taking account of the special features of the RD setting, and (ii) providing a fully data-
dependent method for choosing the bandwidth that is asymptotically optimal in the sense ofLi
(1987).1 Although optimal in large samples, the proposed algorithm involves initial bandwidth
choices and is not unique. We analyse the sensitivity of the results to these choices. We illustrate
our proposed algorithm using a data set previously analysed byLee (2008) and compare our
procedure to global methods and other local methods based on other error criteria. Simulations
indicate that our proposed algorithm works well in realistic settings.

2. BASIC MODEL

In the basic RD setting, researchers are interested in the causal effect of a binary treatment.
In the setting, we consider that we have a sample ofN units, drawn randomly from a large
population. For uniti , for i = 1, . . . , N, usingRubin’s (1974) potential outcome notation, the
variableYi (1) denotes the potential outcome for uniti given treatment andYi (0) denotes the
potential outcome without treatment. For uniti , we observe the treatment received,Wi , equal to
1 if unit i was exposed to the treatment and 0 otherwise, and the outcome corresponding to the
treatment received:

Yi = Yi (Wi ) =

{
Yi (0) if Wi = 0,

Yi (1) if Wi = 1.

We also observe for each unit a scalar covariate, called the forcing variable, denoted byXi . In
Section5, we discuss the case with additional covariates. Define

m(x) = E[Yi |Xi = x],

to be the conditional expectation of the outcome given the forcing variable. The idea behind the
sharp regression discontinuity (SRD) design is that the treatmentWi is determined solely by the
value of the forcing variableXi being on either side of a fixed and known thresholdc or:

Wi = 1Xi ≥c.

1. Matlab and Stata software for implementing this bandwidth rule is available on the Web sitehttp://www.
economics.harvard.edu/faculty/imbens/imbens.html.
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In Section5, we extend the SRD setup to the case with additional covariates and to the fuzzy
regression discontinuity (FRD) design, where the probability of receiving the treatment jumps
discontinuously at the threshold for the forcing variable, but not necessarily from zero to one.

In the SRD design, the focus is on average effect of the treatment for units with covariate
values equal to the threshold:

τSRD = E[Yi (1)−Yi (0)|Xi = c].

Now suppose that the conditional distribution functionsFY(0)|X(y|x) andFY(1)|X(y|x) are con-
tinuous inx for all y and that the conditional first momentsE[Yi (1)|Xi = x] andE[Yi (0)|Xi = x]
exist and are continuous atx = c. Then

τSRD = μ+ −μ−, whereμ+ = lim
x↓c

m(x) and μ− = lim
x↑c

m(x).

Thus, the estimand is the difference of two regression functions evaluated at boundary points.
We focus on estimatingτSRD by separate local linear regressions on both sides of the thresh-

old. We view local non-parametric methods as attractive in this setting compared to methods
based on global approximations to the regression function (e.g.higher-order polynomials ap-
plied to the full data set) because local methods build in robustness by ensuring that observa-
tions with values for the forcing variable far away from the threshold do not affect the point
estimates. Furthermore, in the RD setting, local linear regression estimators are preferred to the
standard Nadaraya–Watson kernel estimator because local linear methods have attractive bias
properties in estimating regression functions at the boundary (Fan and Gijbels, 1992) and enjoy
rate optimality (Porter, 2003).

To be explicit, we estimate the regression functionm(∙) at x as

m̂h(x) =

{
α̂−(x) if x < c,

α̂+(x) if x ≥ c,
(1)

where

(α̂−(x), β̂−(x)) = argmin
α,β

N∑

i =1

1Xi <x ∙ (Yi −α −β(Xi − x))2 ∙ K

(
Xi − x

h

)
,

whereK (∙) is a kernel function described later, and h is the bandwidth, and,

(α̂+(x), β̂+(x)) = argmin
α,β

N∑

i =1

1Xi >x ∙ (Yi −α −β(Xi − x))2 ∙ K

(
Xi − x

h

)
.

Then, we can write the estimator forτSRD as the difference in two regression estimators,

τ̂SRD = μ̂+ − μ̂−,

where the two regression estimators are

μ̂− = lim
x↑c

m̂h(x) = α̂−(c) and μ̂+ = lim
x↓c

m̂h(x) = α̂+(c).

The focus in this paper is on the optimal choice for the bandwidthh.

3. ERROR CRITERION AND INFEASIBLE OPTIMAL BANDWIDTH CHOICE

In this section, we discuss the objective function and derive the optimal bandwidthhopt under
that criterion.
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3.1. Error criteria

The primary question studied in this paper concerns the optimal choice of the bandwidthh. In the
current empirical literature, researchers often choose the bandwidth by either cross-validation or
ad hocmethods. SeeHärdle(1992), Fan and Gijbels(1992), andWand and Jones(1994) for
textbook discussions of cross-validation and related methods, andLudwig and Miller(2007) for
a specific implementation in the RD settings. Conventional cross-validation yields a bandwidth
that is optimal for fitting a curve over the entire support of the data. Typically, it leads to a
bandwidth choice that minimizes an approximation to the mean integrated squared error criterion
(MISE),

MISE(h) = E
[∫

x
(m̂h(x)−m(x))2 f (x)dx

]
,

where f (x) is the density of the forcing variable. This criterion is not directly relevant for the
problem at hand: we wish to choose a bandwidth that is optimal for estimatingτSRD. This esti-
mand has two special features that are not captured in the MISE criterion. First,τSRD depends
onm(x) only through two values and specifically their difference. Second, both these values are
boundary values.

Our proposed criterion is based on the expectation of the asymptotic expansion, aroundh = 0,
of the squared error(τ̂SRD− τSRD)2. First, define the mean squared error:

MSE(h) = E[(τ̂SRD− τSRD)2] = E[((μ̂+ −μ+)− (μ̂− −μ−))2], (2)

and leth∗ be the optimal bandwidth that minimizes this criterion:

h∗ = argmin
h

MSE(h). (3)

This criterion is difficult to work with directly. The problem is that in many cases even as the
sample sizes become infinite, the optimal bandwidthh∗ will not converge to zero. This is because
biases in different parts of the regression function away from the threshold may be offsetting.2

In such cases, the optimal bandwidthh∗ can be very sensitive to the actual distribution and
regression function. Moreover, it does not seem appropriate to base estimation on global criteria
when identification is local. We therefore follow the standard bandwidth choice literature in
statistics by focusing on the bandwidth that minimizes a first-order approximation to MSE(h),
what we call the asymptotic mean squared error or AMSE(h).

A second comment concerns our focus on a single bandwidth. Because the estimand,τSRD,
is a function of the regression function at two points, an alternative would be to allow for a
different bandwidth for these two points,h− for estimatingμ−, andh+ for estimatingμ+ and
focus on an objective function that is an approximation to

MSE(h−,h+) = E[((μ̂+(h+)−μ+)− (μ̂−(h−)−μ−))2], (4)

instead of focusing on an approximation to MSE(h). Doing so would raises an important issue.
We focus on minimizing mean squared error, equal to variance plus bias squared. Suppose that
for both estimators, the biases,E[μ̂−(h−)] −μ− andE[μ̂+(h+)] −μ+, are strictly increasing

2. To be explicit, consider a simple example where we are interested in estimating a regression functiong(x)

at a single point, sayg(0). Suppose the covariateX has a uniform distribution on [0,1]. Suppose the regression
function is g(x) = (x − 1/4)2 − 1/16. With a uniform kernel, the estimator forg(0) is, for a bandwidthh, equal to∑

i :Xi <h Xi /
∑

i :Xi <h 1. As a function of the bandwidthh, the bias is equal toh2/3−h/4, conditional on
∑

i :Xi <h 1.
Thus, the bias is zero ath = 3/4, and if we minimize the expected squared error, the optimal bandwidth will converge
to 3/4 as the sample size gets large.
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(or both strictly decreasing) functions of the bandwidth. Then, there is a functionh+(h−) such
that the bias of the RD estimate, that is the difference between the above biases cancel out:
(E[μ̂−(h−)] −μ−)− (E[μ̂+(h+(h−))−μ+]) = 0. Hence, we can minimize the mean squared
error by lettingh− get large (the variance is generally a decreasing function of the bandwidth)
and choosingh+ = h+(h−). Even if this does not hold exactly, the point is that a problem may
arise that even for large bandwidths, the difference in bias may be close to zero. In practice, it
is unlikely that one can effectively exploit the cancellation of biases for large bandwidths. This
would make it difficult to construct practical bandwidth algorithms. Therefore, in order to avoid
this problem, we focus in this discussion on a single bandwidth choice.

3.2. An asymptotic expansion of the expected error

The next step is to derive an asymptotic expansion of MSE(h) given equation (2) and formally
define the asymptotic approximation AMSE(h). First, we state the key assumptions. Not all
these will be used immediately, but for convenience, we state them all here.

Assumption 3.1. (Yi , Xi ), for i = 1, . . . , N, are independent and identically distributed.

Assumption 3.2. The marginal distribution of the forcing variable Xi , denoted f(∙), is con-
tinuous and bounded away from zero at the threshold c.

Assumption 3.3. The conditional mean m(x) = E[Yi |Xi = x] has at least three continuous
derivatives in an open neighbourhood of X= c. The right and left limits of the kth derivative of
m(x) at the threshold c are denoted by m(k)

+ (c) and m(k)
− (c).

Assumption 3.4. The kernel K(∙) is non-negative, bounded, differs from zero on a compact
interval [0,a], and is continuous on(0,a).

Assumption 3.5. The conditional variance functionσ 2(x) = Var(Yi |Xi = x) is bounded in an
open neighbourhood of X= c and right and left continuous at c. The right and left limit at the
threshold are denoted byσ 2

+(c) andσ 2
−(c), respectively,σ 2

+(c) > 0 andσ 2
−(c) > 0.

Assumption 3.6. The second derivatives from the right and the left differ at the threshold:
m(2)

+ (c) 6= m(2)
− (c).

Now define the AMSE as a function of the bandwidthh:

AMSE(h) = C1 ∙h4 ∙ (m(2)
+ (c)−m(2)

− (c))2 +
C2

N ∙h
∙

(
σ 2

+(c)

f (c)
+

σ 2
−(c)

f (c)

)

. (5)

The constantsC1 andC2 in this approximation are functions of the kernel:

C1 =
1

4

(
ν2

2 −ν1ν3

ν2ν0 −ν2
1

)2

and C2 =
ν2

2π0 −2ν1ν2π1 +ν2
1π2

(ν2ν0 −ν2
1)2

, (6)

where

ν j =
∫ ∞

0
u j K (u)du and π j =

∫ ∞

0
u j K 2(u)du.

The first term in equation (5) corresponds to the square of the bias and the second term corre-
sponds to the variance. The expression for AMSE(h) clarifies the role that Assumption 3.6 will
play. The leading term in the expansion of the bias is of orderh4 if the left and right limits of the
second derivative differ. If these two limits are equal, the bias converges to zero faster, allow-
ing for estimation ofτSRD at a faster rate of convergence. It is difficult to exploit the improved
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convergence rate that would result from this, in practice, because it would be difficult to estab-
lish sufficiently fast that two second derivatives are indeed equal, and therefore, we focus on
optimality results given Assumption 3.6. Note, however, that even if the second derivatives are
identical, our proposed estimator forτSRD will be consistent.

An alternative approach would be to focus on a bandwidth choice that is optimal if the second
derivatives from the left and right are identical. It is possible to construct such a bandwidth choice
and still maintain consistency of the resulting estimator forτSRD irrespective of the difference
in second derivatives. However, such an bandwidth choice would generally not be optimal if
the difference in second derivatives is non-zero. Thus, there is a choice between a bandwidth
choice that is optimal underm(2)

+ (c) 6= m(2)
− (c) and a bandwidth choice that is optimal under

m(2)
+ (c) = m(2)

− (c). In the current paper, we choose to focus on the first case.

Lemma 3.1 (Mean Squared Error Approximation and Optimal Bandwidth).
(i) Suppose Assumptions3.1–3.5hold. Then,

MSE(h) = AMSE(h)+op

(
h4 +

1

N ∙h

)
.

(ii) Suppose that also Assumption3.6holds. Then,

hopt = argmin
h

AMSE(h) = CK ∙

(
σ 2

+(c)+σ 2
−(c)

f (c) ∙ (m(2)
+ (c)−m(2)

− (c))2

)1/5

∙ N−1/5, (7)

where CK = (C2/(4∙C1))
1/5, indexed by the kernel K(∙).

For the edge kernel, withK (u) = 1|u|≤1(1−|u|), shown byCheng, Fan and Marron(1997) to
have optimality properties for boundary estimation problems, the constant isCK ,edge≈ 3∙4375.
For another commonly used kernel, the uniform kernel withK (u) = 1|u|≤1/2, the constant is
approximatelyCK ,uniform ≈ 5∙40.

4. FEASIBLE OPTIMAL BANDWIDTH CHOICE

In this section, we develop an estimator for the bandwidth and discuss its asymptotic properties.
The proposed bandwidth estimator is fully data driven and based on substituting consistent esti-
mators for the various components of the optimal bandwidth given in equation (7). It involves a
number of choices for initial smoothing parameters in order to estimate these components. As is
typically the case with plug-in estimators, these choices are not unique and can be replaced by
others without affecting the asymptotic optimality of the procedure.

4.1. A simple plug-in bandwidth

A natural choice for the estimator for the optimal bandwidth estimator is to replace the six
unknown quantities in the expression for the optimal bandwidthhopt in equation (7) by consistent
estimators, leading to

h̃opt = CK ∙

(
σ̂ 2

−(c)+ σ̂ 2
+(c)

f̂ (c)∙(m̂(2)
+ (c)− m̂(2)

− (c))2

)1/5

∙ N−1/5. (8)

One potential concern here, however, is that the first-order bias may be extremely small or van-
ish in finite samples. This could happen for instance in the constant additive treatment effects
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(CATEs) case wherem(2)
+ (x) = m(2)

− (x) for any x. In this case, the bandwidth that minimizes
first-order mean squares is infinite (the denominator term is zero in equation (8))3.

More generally, even if the true value of the bias term is not zero, the precision with which
we estimate the second derivativesm(2)

+ (c) andm(2)
− (c) is likely to be low. Thus, the estimated

optimal bandwidthh̃opt will occasionally be very large, even when the data are consistent with
a substantial degree of curvature. Thus, estimates of the bandwidth will be very imprecise and
will have a large variance across repeated data sets. Moreover, such a bandwidth may lead to
estimators forτSRD with poor properties because the true finite sample bias depends on global
properties of the regression function that are not captured by the asymptotic approximation used
to calculate the bandwidth.4

4.1.1. Regularization. Motivated by the above concern that due to the error in the esti-
mation of the true curvature, the error in the estimation of its squared reciprocal could potentially
be large, leading to very large and ill-performing bandwidths, we modify the bandwidth estima-
tor using ideas from the regularization literature.5 A simple calculation establishes that the bias
in the plug-in estimator for the reciprocal of the squared difference in second derivatives is

E

[
1

(m̂(2)
+ (c)− m̂(2)

− (c))2
−

1

(m(2)
+ (c)−m(2)

− (c))2

]

=

(
3∙(V(m̂(2)

+ (c))+V(m̂(2)
− (c)))

(m(2)
+ (c)−m(2)

− (c))4

)

+o(N−2α).

This implies that, forr = 3∙(V(m̂(2)
− (c))+V(m̂(2)

+ (c))), the bias in the modified estimator for the
reciprocal of the squared difference in second derivatives is of lower order:

E

[
1

(m̂(2)
+ (c)− m̂(2)

− (c))2 + r
−

1

(m(2)
+ (c)−m(2)

− (c))2

]

= o(N−2α).

This in turn motivates the modified bandwidth estimator

ĥopt = CK ∙

(
σ̂ 2

−(c)+ σ̂ 2
+(c)

f̂ (c)((m̂(2)
+ (c)− m̂(2)

− (c))2 + r̂− + r̂+)

)1/5

∙ N−1/5, (9)

where
r̂− = 3∙V̂(m̂(2)

− (c)) and r̂+ = 3∙V̂(m̂(2)
+ (c)).

Note that this bandwidth will not become infinite even in the cases when the difference in cur-
vatures at the threshold is zero.

3. This problem is not unique to our specific estimator. In the general case of estimating a regression at an interior
point, this occurs when the second derivative at that point is zero

4. As an aside, the same formal argument applies to the estimator of the density. If the estimated density is close
to zero, the bandwidth estimator might become unstable. However, in practice that is rarely a concern: if the true density
is so close to zero that one cannot estimate the density accurately at the threshold, it is unlikely that any estimates of
the discontinuity will be precise enough to be of interest. We therefore focus on the complications arising from the
difference in second derivatives being estimated to be close to zero.

5. Kalyanaraman(2008) has developed some theory about regularization in bandwidth selection in the different
context of estimated smooth regression functionals.
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4.1.2. Implementing the regularization. Consider first a simplification of the regular-
ization termr = r−+r+, wherer− andr+ are three times the variance of the estimated curvatures
on the left and the right, respectively. To be explicit, we estimate the second derivativem(2)

+ (c)
by fitting a quadratic function to the observations withXi ∈ [c,c+ h]. The initial bandwidth
h here will be different from the bandwidtĥhopt used in the estimation ofτSRD, and its choice
will be discussed in Section4.2. Let Nh,+ be the number of units with covariate values in this
interval. We assume homoskedasticity with error varianceσ 2(c) in this interval. Let

μ̂ j,h,+ =
1

Nh,+

∑

c≤Xi ≤c+h

(Xi − X) j , whereX =
1

Nh,+

∑

c≤Xi ≤c+h

Xi ,

be the j th (centred) moment of theXi in the interval [c,c+ h]. We can derive the following
explicit formula for three times the conditional variance of the curvature on the left, denoted by
r+, in terms of these moments:

r+ =
12

Nh,+
∙

(
σ 2

+(c)

μ̂4,h,+ − (μ̂2,h,+)2 − (μ̂3,h,+)2/μ̂2,h,+

)

.

However, because fourth moments are difficult to estimate precisely, we approximate this ex-
pression exploiting the fact that for smallh, the distribution of the forcing variable can be ap-
proximated by a uniform distribution on [c,c+ h], so thatμ2,h,+ ≈ h2/12, μ3,h,+ ≈ 0, and
μ4,h,+ ≈ h4/60. After substitutinĝσ 2

−(c) for σ 2
−(c) andσ̂ 2

+(c) for σ 2
+(c), this leads to

r̂+ =
2160∙σ̂ 2

+(c)

Nh,+∙h4
, and similarly r̂− =

2160∙σ̂ 2
−(c)

Nh,−∙h4
.

The proposed bandwidth is now obtained by adding the regularization termr̂ = r̂− + r̂+ to the
squared difference-in-curvature term in the bias term of MSE expansion:

ĥopt = CK ∙

(
σ̂ 2

−(c)+ σ̂ 2
+(c)

f̂ (c)((m̂(2)
+ (c)− m̂(2)

− (c))2 + r̂− + r̂+)

)1/5

∙N−1/5. (10)

To operationalize this proposed bandwidth, we need specific estimatorsf̂ (c), σ̂ 2
−(c), σ̂ 2

+(c),
m̂(2)

− (c), and m̂(2)
+ (c). In the next section, we discuss a specific way of doing so, leading to

a completely data-driven bandwidth choice. This bandwidth estimator will be shown to have
certain optimality properties. It should be noted though that our proposed bandwidth estimator
is not unique in having these optimality properties. Any combination of consistent estimators
for f (c), σ 2

−(c), σ 2
+(c), m(2)

− (c), andm(2)
+ (c) substituted into expression (10), with or without

the regularity terms, will have the same optimality properties. Within this class, our proposed
estimator is relatively simple, but the more important point is that it is a specific estimator, in the
same spirit as the Silverman rule-of-thumb bandwidth for non-parametric density estimation:
it gives a convenient starting point and benchmark for doing a sensitivity analyses regarding
bandwidth choice.

In addition, we will address the sensitivity of our bandwidth estimator to the choices made
in our algorithm in a simulation study. In general, we find the bandwidth selection algorithm to
be relatively robust to these choices. This is not surprising given that the presence of the power
1/5 in the expression for the optimal bandwidth: for example, doubling the estimates for both
σ 2

−(c) andσ 2
+(c) only increases the estimated bandwidth by a factor 21/5 ≈ 1∙18.
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4.2. An algorithm for bandwidth selection

The reference bandwidtĥhopt is a function of estimates forf (c), σ 2
−(c), σ 2

+(c), m(2)
− (c), and

m(2)
+ (c) and the kernelK (∙). Here, we give a specific algorithm for implementation. In prac-

tice, we recommend using the theoretically optimal edge kernel, whereK (u) = 1|u|≤1∙(1−|u|),
which also has consistently superior performance in simulations, although the algorithm is easily
modified for other kernels by changing the kernel-specific constantCK . To calculate the band-
width, we also need estimators for the density at the threshold,f (c), the conditional variances
at the threshold,σ 2

−(c) andσ 2
+(c), and the limits of the second derivatives at the threshold from

the right and the left,m(2)
− (c), m(2)

+ (c). (The other components of equation (10), r̂− andr̂+, are
functions of these four components.) The first three functionals are calculated in Step 1, the last
two in Step 2. Step 3 puts these together with the appropriate kernel constantCK to produce the
reference bandwidtĥhopt.

We make the following choices in this algorithm. First, an initial bandwidthh1 and a kernel
to estimate the densityfX(c) and the conditional outcome variancesσ 2

−(c) andσ 2
+(c). Second,

a pair of bandwidthsh2,− andh2,+ for estimating the second derivativesm(2)
− (c), m(2)

+ (c). We
choose these two bandwidthsh2,− andh2,+ optimally given the third derivative, which in turn we
estimate globally. The choices forh1, the initial kernel, and the estimator for the third derivative
do not affect the asymptotic optimality properties of the bandwidth estimator, but they do affect
the finite sample properties.

Step 1. Estimation of density f(c) and conditional variancesσ 2
−(c) andσ 2

+(c).
First, calculate the sample variance of the forcing variable,S2

X =
∑

(Xi − X)2/(N −1). We now
use the Silverman rule to get a pilot bandwidth for calculating the density and variance atc.
The standard Silverman rule ofh = 1∙06∙SX ∙N−1/5 is based on a normal kernel and a normal
reference density. We modify this for the uniform kernel on [−1,1] and the normal reference
density and calculate the pilot bandwidthh1 as follows:

h1 = 1∙84∙SX ∙N−1/5.

We assess the sensitivity of the choice of a uniform kernel in the final simulations. We choose
the uniform kernel because we are interested in a simple estimate of density, that is proportion
of observations near the threshold (which is a kernel density estimate with a uniform kernel).
Using alternative kernels would not affect the optimality properties in Theorem 4.1.

Calculate the number of units on either side of the threshold, and the average outcomes on
either side as

Nh1,− =
N∑

i =1

1c−h1≤Xi <c, Nh1,+ =
N∑

i =1

1c≤Xi ≤c+h1,

Yh1,− =
1

Nh1,−

∑

i :c−h1≤Xi <c

Yi , and Yh1,+ =
1

Nh1,+

∑

i :c≤Xi ≤c+h1

Yi .

Now estimate the density ofXi atc as

f̂ (c) =
Nh1,− + Nh1,+

2∙N∙h1
, (11)

and estimate the limit of the conditional variances ofYi givenXi = x, atx = c, from the left and
the right, as

σ̂ 2
−(c) =

1

Nh1,− −1

∑

i :c−h1≤Xi <c

(Yi −Yh1,−)2, (12)
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and
σ̂ 2

+(c) =
1

Nh1,+ −1

∑

i :c≤Xi ≤c+h1

(Yi −Yh1,+)2. (13)

The main property we will need for these estimators is that they are consistent for the density and
the conditional variance, respectively. They need not be efficient for the optimality properties in
Theorem 4.1. Because the bandwidth goes to zero at rateN−1/5, Assumptions 3.2 and 3.5 are
sufficient for consistency of these estimators.

Step 2. Estimation of second derivativeŝm(2)
+ (c) andm̂(2)

− (c).
First, we need pilot bandwidthsh2,− andh2,+. We base this on a simple, not necessarily con-
sistent, estimator of the third derivative ofm(∙) at c. Fit a third-order polynomial to the data,
including an indicator forXi ≥ 0. Thus, estimate the regression function

Yi = γ0 +γ1∙1Xi ≥c +γ2∙(Xi −c)+γ3∙(Xi −c)2 +γ4∙(Xi −c)3 + εi , (14)

and estimatem(3)(c) asm̂(3)(c) = 6∙γ̂4. This will be our estimate of the third derivative of the
regression function. Note that̂m(3)(c) is in general not a consistent estimate ofm(3)(c) but will
converge to some constant at a parametric rate.

However, we do not need a consistent estimate of the third derivative atc here to obtain a
consistent estimator for the second derivative. Calculateh2,+, using theσ̂ 2

−(c), σ̂ 2
+(c) and f̂ (c)

from Step 1, as

h2,+ = 3∙56∙

(
σ̂ 2

+(c)

f̂ (c)∙(m̂(3)(c))2

)1/7

∙ N−1/7
+ (15)

and

h2,− = 3∙56∙

(
σ̂ 2

−(c)

f̂ (c)∙(m̂(3)(c))2

)1/7

∙ N−1/7
− ,

whereN− andN+ are the number of observations to the left and right of the threshold, respec-
tively. These bandwidths,h2,− andh2,+, are estimates of the optimal bandwidth for calculation
of the second derivative at a boundary point using a local quadratic and a uniform kernel. See the
Appendix for details. Again alternative consistent estimators for these second derivatives would
also lead to optimality for the corresponding bandwidth estimatorĥopt.

Given the pilot bandwidthh2,+, we estimate the curvaturem(2)
+ (c) by a local quadratic fit. To

be precise, temporarily discard the observations other than theN2,+ observations withc ≤ Xi ≤
c+ h2,+. Label the new datâY+ = (Y1, . . . ,YN2,+) and X̂+ = (X1, . . . , XN2,+) each of length
N2,+. Fit a quadratic to the new data. That is, letT = [ιT1T2], whereι is a column vector of
ones, andT′

j = ((X1 −c) j , . . . , (XN2,+ −c) j ), for j = 1,2. Estimate the regression coefficients

λ̂ = (T′T)−1T′Ŷ. Calculate the curvature aŝm(2)
+ (c) = 2∙λ̂3. This is a consistent estimate of

m(2)
+ (c). To estimatem(2)

− (c), follow the same procedure using the data withc−h2,− ≤ Xi < c.

Step 3. Calculation of regularization termŝr− andr̂+ and calculation of̂hopt.
Given the previous steps, the regularization terms are calculated as follows:

r̂+ =
2160∙σ̂ 2

+(c)

N2,+∙h4
2,+

and r̂− =
2160∙σ̂ 2

−(c)

N2,−∙h4
2,−

. (16)

We now have all the pieces to calculate the proposed bandwidth:

ĥopt = CK ∙

(
σ̂ 2

−(c)+ σ̂ 2
+(c)

f̂ (c)∙((m̂(2)
+ (c)− m̂(2)

− (c))2 + (r̂+ + r̂−))

)1/5

∙ N−1/5, (17)
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whereCK is, as in Lemma 3.1, a constant that depends on the kernel used. For the edge kernel,
with K (u) = (1−|u|)∙1|u|≤1, the constant isCK ≈ 3∙4375.

Given the bandwidtĥhopt, we estimateτSRD as follows:

τ̂SRD = lim
x↓c

m̂ĥopt
(x)− lim

x↑c
m̂ĥopt

(x),

wherem̂h(x) is the local linear regression estimator defined in equation (1).

4.3. Properties of algorithm

For the bandwidth choice based on this algorithm, we establish some asymptotic properties.
First, the resulting RD estimatorτ̂SRD is consistent at the best rate for non-parametric regression
functions at a point (Stone, 1982). Second, the estimated constant term in the reference band-
width converges to the best constant. Third, we have aLi (1987) type optimality result for the
mean squared error and consistency at the optimal rate for the RD estimate. The optimality result
implies that asymptotically the procedure with the estimated bandwidthĥopt performs as well as
the infeasible procedure with the optimal bandwidthhopt.

Theorem 4.1 (Properties ofĥopt).
Suppose Assumptions3.1–3.5hold. Then:

(i ) (consistency) if Assumption3.6holds, then

τ̂SRD− τSRD = Op(N−2/5). (18)

(i i ) (consistency) if Assumption3.6does not hold, then

τ̂SRD− τSRD = Op(N−3/7). (19)

(i i i ) (convergence of bandwidth)

ĥopt−hopt

hopt
= op(1), (20)

and(i v) (Li’s optimality):

MSE(ĥopt)−MSE(hopt)

MSE(hopt)
= op(1). (21)

Note that when Assumption 3.6 holds, the convergence rate (N−2/5) for τ̂SRD is slower than
when Assumption 3.6 does not hold (namelyN−3/7). This is because failure of Assumption
(3.6) implies that the second derivatives from the left and right are equal, implying in turn that
the leading term of the bias vanishes, which, as one might expect, would improve convergence.

4.4. DesJardins–McCall bandwidth selection

DesJardins and McCall(2008) use an alternative method for choosing the bandwidth. They
focus separately on the limits of the regression function to the left and the right rather than on
the difference in the limits. This implies a focus on minimizing an objective criterion based on
the sum of the squared differences betweenμ̂− andμ− and between̂μ+ andμ+:

E[(μ̂+ −μ+)2 + (μ̂− −μ−)2],
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instead of our criterion, which focuses on the squared difference between(μ̂+ − μ̂−) and
(μ+ −μ−),

E[((μ̂+ −μ+)− (μ̂− −μ−))2] = E[(τ̂SRD− τSRD)2].

The single optimal bandwidth based on the DesJardins and McCall criterion is

hDM = CK ∙

(
σ 2

+(c)+σ 2
−(c)

f (c)∙(m(2)
+ (c)2 +m(2)

− (c)2)

)1/5

∙ N−1/5.

This will in large samples lead to a smaller bandwidth than our proposed bandwidth choice if the
second derivatives are of the same sign. DesJardins and McCall actually use different bandwidths
on the left and the right and also use a Epanechnikov kernel instead of the optimal edge kernel.
In the simulations and bandwidth comparisons below, we use the better performing edge kernel
to facilitate the comparison with our proposed bandwidthĥopt.

4.5. Ludwig–Miller cross-validation

In this section, we briefly describe the cross-validation method used byLudwig and Miller(2005,
LM from hereon), which we compare to our proposed bandwidth in the application and simu-
lations. The LM bandwidth is the only cross-validation bandwidth selection procedure in the
literature that is specifically aimed at the RD setting. LetN− andN+ be the number of observa-
tions withXi < c andXi ≥ c, respectively. Forδ ∈ (0,1), let θ−(δ) andθ+(δ) be theδth quantile
of the Xi among the subsample of observations withXi < c andXi ≥ c, respectively, so that

θ−(δ) = argmin
a

{

a

∣
∣
∣
∣
∣

(
N∑

i =1

1Xi ≤a

)

≥ δ∙N−

}

and

θ+(δ) = argmin
a

{

a

∣
∣
∣
∣
∣

(
N∑

i =1

1c≤Xi ≤a

)

≥ δ∙N+

}

.

Now the LM cross-validation criterion we use is of the form

CVδ(h) =
N∑

i =1

1θ−(1−δ)≤Xi ≤θ+(δ)∙(Yi − m̂h(Xi ))
2.

(In fact, LM use a slightly different criterion function, where they sum up over all observa-
tions within a distanceh0 from the threshold.) The estimator for the regression function here is
m̂h(x) defined in equation (1). A key feature ofm̂h(x) is that for values ofx < c, it only uses
observations withXi < x to estimatem(x) and for values ofx ≥ c, it only uses observations
with Xi > x to estimatem(x), so thatm̂h(Xi ) does not depend onYi , as is necessary for cross-
validation. By using a value forδ close to zero, we only use observations close to the threshold
to evaluate the cross-validation criterion. Apart from the choice on needs to make ofδ, the con-
cern is that by using too small value ofδ, we may not get a precisely estimated cross-validation
bandwidth. In a minor modification of the LM proposal, we use the edge kernel instead of the
Epanechnikov kernel they suggest. In our calculations, we useδ = 0∙5.

Any fixed value forδ is unlikely to lead to an optimal bandwidth in general, as it is im-
plicitly based on a criterion function that is appropriate for fitting the entire regression function
between the(1− δ)-quantile for the observations on the left and theδ-quantile for observations
on the right. Moreover, the criterion focuses implicitly on minimizing a criterion more akin to
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E[(μ̂+ −μ+)2 + (μ̂− −μ−)2] (with the errors in estimatingμ− andμ+ squared before adding
them up), rather than MSE(h) =E[((μ̂+ −μ+)−(μ̂− −μ−))2] where the error in the difference
μ+ −μ− is squared. As a result, even lettingδ → 0 with the sample size in the cross-validation
procedure will not result in an optimal bandwidth.

5. EXTENSIONS

In this section, we discuss two extensions. First, we consider the FRD design and second, we
allow for the presence of covariates.

5.1. The fuzzy regression design

In the FRD design , the treatmentWi is not a deterministic function of the forcing variable.
Instead, the probability Pr(Wi = 1|Xi = x) changes discontinuously at the thresholdc. The
focus is on the ratio

τFRD =
limx↓cE[Yi |Xi = x] − limx↑cE[Yi |Xi = x]

limx↓cE[Wi |Xi = x] − limx↑cE[Wi |Xi = x]
.

In an important theoretical paper,Hahn, Todd and Van Der Klaauw(2001) discuss identification
in this setting and show that in settings with heterogenous effects, the estimand has an interpre-
tation as a local average treatment effect (Imbens and Angrist, 1994). In the FRD case, we need
to estimate two regression functions, each at two boundary points: the expected outcome given
the forcing variableE[Yi |Xi = x] to the right and left of the thresholdc and the expected value
of the treatment variable given the forcing variableE[Wi |Xi = x] again both to the right and
left of c. Again, we focus on a single bandwidth, now the bandwidth that minimizes the mean
squared error to this ratio. Define

τY = lim
x↓c
E[Yi |Xi = x] − lim

x↑c
E[Yi |Xi = x] and τW = lim

x↓c
E[Wi |Xi = x] − lim

x↑c
E[Wi |Xi = x],

with τ̂Y and τ̂W denoting the corresponding estimators, so thatτFRD = τY/τW and τ̂FRD =
τ̂Y/τ̂W. In large samples, we can approximate the differenceτ̂FRD− τFRD by

τ̂FRD− τFRD =
1

τW
(τ̂Y − τY)−

τY

τ2
W

(τ̂W − τW)+op((τ̂Y − τY)+ (τ̂W − τW)).

This is the basis for the asymptotic approximation to the MSE aroundh = 0:

AMSEFRD(h) = C1h4

(
1

τW
(m(2)

Y,+(c)−m(2)
Y,−(c))−

τY

τ2
W

(m(2)
W,+(c)−m(2)

W,−(c))

)2

(22)

+
C2

Nh f(c)

(
1

τ2
W

(σ 2
Y,+(c)+σ 2

Y,−(c))+
τ2

Y

τ4
W

(σ 2
W,+(c)+σ 2

W,−(c))

−
2τY

τ3
W

(σY W,+(c)+σY W,−(c))

)

.

In this expression, the constantsC1 andC2 are the same as before in equation (6). The second
derivatives of the regression functions,m(2)

Y,−(c), m(2)
Y,+(c), m(2)

W,−(c), andm(2)
W,+(c), are now de-

fined separately for the treatmentW and the outcomeY. In addition, the conditional variances
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are indexed by the treatment and outcome. Finally, the AMSE also depends on the right and left
limit of the covariance ofW andY conditional on the forcing variable, at the threshold, denoted
by σY W,+(c) andσY W,−(c), respectively.

The bandwidth that minimizes the AMSE in the fuzzy design is

hopt,FRD = CK ∙N−1/5 (23)

×

(
(σ 2

Y,+(c)+σ 2
Y,−(c))+ τ2

FRD(σ 2
W,+(c)+σ 2

W,−(c))−2τFRD(σY W,+(c)+σY W,−(c))

f (c)∙((m(2)
Y,+(c)−m(2)

Y,−(c))− τFRD(m(2)
W,+(c)−m(2)

W,−(c)))2

)1/5

.

The analogue of the bandwidth proposed for the SRD is

ĥopt,FRD = CK ∙N−1/5 (24)

×

(
(σ̂ 2

Y,+(c)+ σ̂ 2
Y,−(c))+ τ̂2

FRD(σ̂ 2
W,+(c)+ σ̂ 2

W,−(c))−2τ̂FRD(σ̂Y W,+(c)+ σ̂Y W,−(c))

f̂ (c)∙(((m̂(2)
Y,+(c)− m̂(2)

Y,−(c))− τ̂FRD(m̂(2)
W,+(c)− m̂(2)

W,−(c)))2 + r̂Y,+ + r̂Y,− + τ̂FRD(r̂W,+ + r̂W,−))

)1/5

.

We can implement this as follows. First, using the algorithm described for the SRD case sepa-
rately for the treatment indicator and the outcome, calculateτ̂FRD, f̂ (c), σ̂ 2

Y,+, σ̂ 2
Y,−, σ̂ 2

W,+, σ̂ 2
W,−,

m̂(2)
Y,+(c), m̂(2)

Y,−(c), m̂(2)
W,+(c), m̂(2)

W,−(c), r̂Y,+, r̂Y,−, r̂W,+, andr̂W,−. Second, using the initial Sil-
verman bandwidth use the deviations from the means to estimate the conditional covariances
σ̂Y W,+(c) andσ̂Y W,−(c). Then, substitute everything into the expression for the bandwidth. By
the same argument as for the SRD case, the resulting bandwidth has the asymptotic no-regret
property.

In practice, this often leads to bandwidth choices similar to those based on the optimal band-
width for estimation of only the numerator of the RD estimand. One may therefore simply wish
to use the basic algorithm ignoring the fact that the regression discontinuity design is fuzzy.

5.2. Additional covariates

Typically, the presence of additional covariates does not affect the RD analyses very much. In
most cases, the distribution of the additional covariates does not exhibit any discontinuity around
the threshold for the forcing variable, and as a result, those covariates are approximately inde-
pendent of the treatment indicator for samples constructed to be close to the threshold. In that
case, the covariates only affect the precision of the estimator, and one can modify the previous
analysis using the conditional variance ofYi given all covariates at the threshold,σ 2

−(c|x) and
σ 2

+(c|x) instead of the variancesσ 2
−(c) andσ 2

+(c) that condition only on the forcing variable.
In practice, this modification does not affect the optimal bandwidth much unless the additional
covariates have great explanatory power (recall that the variance enters to the power 1/5), and
the basic algorithm is likely to perform adequately even in the presence of covariates. For ex-
ample, if the conditional variances are half the size of the unconditional ones, using the basic
algorithm with unconditional variances will mean that the bandwidth will be off only by a factor
(1−1/21/5) or approximately 0∙17.

6. AN ILLUSTRATION AND SOME SIMULATIONS

6.1. Data

To illustrate the implementation of these methods, we use a data set previously analysed byLee
(2008) in a recent influential application of RD designs. Lee studies the incumbency advantage
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FIGURE 1
Density for forcing variable

in elections. His identification strategy is based on the discontinuity generated by the rule that
the party with a majority vote share wins. The forcing variableXi is the difference in vote share
between the Democratic and Republican parties in one election, with the thresholdc = 0. The
outcome variableYi is vote share at the second election. There are 6558 observations (districts)
in this data set, 3818 withXi > 0, and 2740 withXi < 0. The average difference in voting
percentages at the last election for the Democrats was 0∙13, with a standard deviation of 0∙46.

Figure1 plots the density of the forcing variable, in bins with width 0∙05. Figure2 plots the
average value of the outcome variable, in 40 bins with width 0∙05, against the forcing variable.
The discontinuity is clearly visible in the raw data, lending credibility to any positive estimate
of the incumbency effect. The vertical line indicate the optimal bandwidth calculated below.

6.2. Imbens-Kalyanaraman (IK) algorithm on Lee data

In this section, we implement our proposed bandwidth on the Lee data set. For expositional
reasons, we gave all the intermediate steps.

Step 1. Estimation of density f(0) and conditional varianceσ 2(0).
We start with the modified Silverman bandwidth,

h1 = 1∙84∙ SX ∙ N−1/5 = 1∙84∙0∙4553∙6558−1/5 = 0∙1445.

FIGURE 2
Regression function for democratic vote share
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There areNh1,− = 836 units with values forXi in the interval [−h1,0), with an average outcome
of Yh1,− = 0∙4219 and a sample variance ofS2

Y,h1,−
= 0∙10472, and Nh1,+ = 862 units with

values forXi in the interval [0,h1], with an average outcomeof Yh1,+ = 0∙5643 and a sample
variance ofS2

Y,h1,+
= 0∙12022. This leads to

f̂ (0) =
Nh1,− + Nh1,+

2∙N∙h1
=

836+862

2×6558×0∙1445
= 0∙8962

and
σ̂ 2

−(0) = S2
Y,h1,− = 0∙10472 and σ̂ 2

+(0) = S2
Y,h1,+ = 0∙12022.

Step 2. Estimation of second derivativeŝm(2)
+ (0) andm̂(2)

− (0).
To estimate the curvature at the threshold, we first need to choose bandwidthsh2,+ andh2,−.
We choose these bandwidths based on an estimate ofm̂(3)(0) obtained by fitting a global cubic
with a jump at the threshold:

Yi = γ0 +γ1∙1Xi ≥c +γ2∙(Xi −c)+γ3∙(Xi −c)2 +γ4∙(Xi −c)3 + εi .

The least squares estimate forγ4 is γ̂4 = −0∙1686, and thus, the third derivative at the threshold
is estimated aŝm(3)(0) = 6∙γ̂4 = −1∙0119. This leads to the two bandwidths

h2,+ = 3∙56×

(
σ̂ 2

+(0)

f̂ (0)× (m̂(3)(0))2

)1/7

× N−1/7
+ = 0∙6057 and h2,− = 0∙6105.

The two pilot bandwidths are used to fit two quadratics. The quadratic to the right of 0 is fitted
on [0,0∙6057], yieldingm̂(2)

+ (0) = 0∙0455 and the quadratic to the left is fitted on [−0∙6105,0]
yielding m̂(2)

− (0) = −0∙8471.

Step 3. Calculation of regularization termŝr− andr̂+ and calculation of̂hopt.
Next, the regularization terms are calculated. We obtain

r̂+ =
2160× σ̂ 2

+(0)

N2,+ ×h4
2,+

=
2160×0∙12022

2814×0∙60574
= 0.0825 and r̂− =

2160× σ̂ 2
−(0)

N2,− ×h4
2,−

= 0∙0675.

Now we have all the ingredients to calculate the optimal bandwidth under different kernels and
the corresponding RD estimates. Using the edge kernel withCK = 3∙4375, we obtain

ĥopt = CK

(
σ̂ 2

−(0)+ σ̂ 2
+(0)

f̂ (0) ∙ ((m̂(2)
+ (0)− m̂(2)

− (0))2 + (r̂+ + r̂−))

)1/5

N−1/5 = 0∙2939.

6.3. Thirteen estimates for the Lee data

Here, we calculate 13 estimates of the ultimate object of interest, the size of the discontinuity
in m(x) at zero. The first eight are based on local linear regression and the last five on global
polynomial regressions. The first is based on our proposed bandwidth. The second drops the reg-
ularization terms. The third uses a normal kernel and the corresponding Silverman bandwidth
for estimating the density function at the threshold (h1 = 1∙06∙ Sx ∙ N−1/5). The fourth estimates
separate cubic regressions on the left and the right of the threshold to derive the bandwidth for
estimating the second derivatives. The fifth estimates the conditional variance at the threshold
assuming its left and right limit are identical. The sixth uses a uniform kernel on [−1/2,1/2]
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TABLE 1
RD estimates and bandwidths for Leedata

Procedure h τ̂SRD (Standarderror)

ĥopt 0∙2939 0∙0799 0∙0083
No regularization 0∙3042 0∙0802 0∙0082
f (c) estimated using normal kernel 0∙2938 0∙0799 0∙0083
Third-order polynomial separate on left and right 0∙2546 0∙0774 0∙0089
Homoskedastic variance 0∙2940 0∙0799 0∙0083
Uniform kernel 0∙4617 0∙0806 0∙0087
DesJardin–McCall 0∙3105 0∙0804 0∙0081
LM cross-validation (δ = 0∙5) 0∙9750 0∙0788 0∙0056

Linear Global 0∙1182 0∙0056
Quadratic Global 0∙0519 0∙0071
Cubic Global 0∙1115 0∙0093
Quartic Global 0∙0766 0∙0113
Quintic Global 0∙0433 0∙0132

instead of the optimal edge kernel. The seventh bandwidth is based on the DesJardin–McCall cri-
terion, where we modify the procedure to use the edge kernel instead of the Epanechikov kernel
that DesJardin–McCall use. The eighth bandwidth is based on the LM cross-validation criterion.
The last five estimates forτSRD are based on global linear, quadratic, cubic, quartic, and quintic
regressions. The point estimates and robust standard errors are presented in Table1. To investi-
gate the overall sensitivity of the point estimates to the bandwidth choice, Figure3 plots the RD
estimateŝτSRD(h), and the associated 95% confidence intervals, as a function of the bandwidth,
for h between 0 and 1. The solid vertical line indicates the optimal bandwidth (ĥopt = 0∙2939).

6.4. A small simulation study

Next, we conduct a small Monte Carlo study to assess the properties of the proposed bandwidth
selection rule in practice. We consider four designs, the first based on the Lee data, the second
on a very simple low-order polynomial, and the third and fourth on a case of constant average
treatment effect.

FIGURE 3
RD estimates and confidence intervals by bandwidth
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In the first design, based on the Lee data, we use a Beta distribution for the forcing variable.
Let Z have a beta distribution with parametersα = 2 andβ = 4, then the forcing variable is
X = 2∙Z −1. The regression function is a fifth-order polynomial, with separate coefficients for
Xi < 0 andXi > 0, with the coefficients estimated on the Lee data (after discarding observations
with past vote share differences greater than 0∙99 and less than−0∙99), leading to

mLee(x) =

{
0∙48+1∙27x +7∙18x2 +20∙21x3 +21∙54x4 +7∙33x5 if x < 0,

0∙52+0∙84x −3∙00x2 +7∙99x3 −9∙01x4 +3∙56x5 if x ≥ 0.

The error variance isσ 2
ε = 0∙12952. We use data sets of size 500 (smaller than the Lee data set

with 6558 observations, but more in line with common sample sizes).
In the second design, we use the same distribution for the forcing variable as in the first

design. We again have 500 observations per sample, and the true regression function is quadratic
both to the left and to the right of the threshold, but with different coefficients:

mquad(x) =

{
3x2 if x < 0,

4x2 if x ≥ 0,

implying the data-generating process is close to the point where the bandwidthhopt is fairly large
(because the left and right limit of the second derivative are 6 and 8, respectively), and one may
expect some effect from the regularization. The error variance is the same as in the first design,
σ 2

ε = 0∙12952.
Under the third design, we have a constant average treatment effect, and consequently,

the second derivatives on both sides of the threshold are equal. Here, one might expect the
DesJardins–McCall bandwidth to work particularly well because it assumes equality of the sec-
ond derivatives. We base the design on the Lee data, where we use the following regressions,
where note that the regression for the treated group (right of the threshold) is an additive shift
(of 0∙1, approximately the discontinuity in the original sample) of the treatment effect regression
for the control (left of threshold). In other words, we test a scenario where the treatment effect
is constant across values of the forcing variable.

mCATE(1)(x) = 0∙42+0∙1∙1x≥0 +0∙84x −3∙00x2 +7∙99x3 −9∙01x4 +3∙56x5.

Our fourth design is a modification of the above. We look at the constant additive treatment
effect case where the curvature at the threshold is zero on both sides (for instance, in locally
linear regression functions). To do this, we simply usemCATE(1)(x), but set the coefficients on
the squared term to zero:

mCATE(2)(x) = 0∙42+0∙1∙1x≥0 +0∙84x +7∙99x3 −9∙01x4 +3∙56x5.

The other parameters for the data generating process are set as in the simulations based on
the Lee data. In the last two cases, one might expect substantial effects from regularization
because the infeasible optimal bandwidth in both cases is infinite. Moreover, in the last case, even
methods that are based on separately estimating left and right end points will need regularization.

In Tables2 and3, we report results for the same estimators as we reported in Table1 for the
real data. We include one additional bandwidth choice, namely the infeasible optimal bandwidth
hopt, which can be derived because we know the data generating process. In Tables2 and3,
we present for both designs in each case the mean (Mean) and standard deviation (S.D.) of the
bandwidth choices and the bias (Bias) and the root mean squared error (RMSE) of the estimator
for τ .
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TABLE 2
Simulations, 5000 replications

ĥ τ̂SRD

Mean S.D. Bias RMSE

Lee design
hopt (infeasible) 0∙166 0∙017 0∙060
ĥopt 0∙480 0∙058 0∙040 0∙054
No regularization 0∙757 0∙680 0∙037 0∙051
f (c) estimated using normal kernel 0∙480 0∙058 0∙040 0∙054
Third-order polynomial separate on left and right 0∙336 0∙037 0∙038 0∙056
Homoskedastic variance 0∙478 0∙058 0∙041 0∙054
Uniform kernel 0∙377 0∙046 0∙034 0∙056
DesJardins–McCall 0∙556 0∙134 0∙037 0∙051
LM cross-validation (δ = 0∙5) 0∙423 0∙115 0∙037 0∙054
Linear Global 0∙048 0∙055
Quadratic Global –0∙019 0∙043
Cubic Global 0∙087 0∙100
Quartic Global 0∙028 0∙068
Quintic Global 0∙001 0∙074

Quadratic design
hopt (infeasible) 0∙418 0∙003 0∙037
ĥopt 0∙422 0∙070 0∙006 0∙036
No regularization 0∙473 0∙268 0∙015 0∙045
f (c) estimated using normal kernel 0∙422 0∙070 0∙006 0∙036
Third-order polynomial separate on left and right 0∙372 0∙060 0∙003 0∙040
Homoskedastic variance 0∙421 0∙070 0∙006 0∙036
Uniform kernel 0∙332 0∙055 –0∙041 0∙067
DesJardins–McCall 0∙223 0∙010 –0∙002 0∙049
LM cross-validation (δ = 0∙5) 0∙220 0∙023 –0∙002 0∙050
Linear Global 0∙245 0∙251
Quadratic Global –0∙000 0∙037
Cubic Global –0∙000 0∙048
Quartic Global –0∙000 0∙060
Quintic Global –0∙000 0∙073

First, consider the design motivated by the Lee data. All feasible bandwidth selection meth-
ods combined with local linear estimation perform fairly similarly under this design as far as
τ̂SRD is concerned and close to the infeasiblehopt. There is considerably more variation in the
performance of the global polynomial estimators. The quadratic estimator performs very well,
but adding a third-order term increases both bias and RMSE. The quintic approximation does
very well in terms of bias, not surprising given the regression that generated the data was a
fifth-order polynomial but has a higher RMSE than the local methods.

In the second design, the regularization matters, and the bandwidth choices based on dif-
ferent criterion functions perform worse than the proposed bandwidth in terms of RMSE, in-
creasing it by about 35%. The global quadratic estimator obviously performs well here because
it corresponds to the data generating process, but it is interesting that the local linear estimator
based on̂hopt has a RMSE very similar to that for the global quadratic estimator.

In the third and forth designs, as expected, regularization matters even more. Again the band-
width choices based on different criterion functions perform worse. In particular, in the case
where the regression function has no curvature at the threshold, methods based on estimating
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TABLE 3
Simulations, 5000 replications

ĥ τ̂SRD

Mean S.D. Bias RMSE
CATE(1), non-zero curvature

hopt (infeasible) ∞ –3∙758 3∙767
ĥopt 0∙174 0∙016 –0∙008 0∙058
No regularization 0∙257 0∙206 –0∙067 0∙303
f (c) estimated using normal kernel 0∙174 0∙016 –0∙008 0∙058
Third-order polynomial separate on left and right 0∙164 0∙013 –0∙007 0∙059
Homoskedastic variance 0∙175 0∙016 –0∙009 0∙058
Uniform kernel 0∙137 0∙013 0∙003 0∙069
DesJardins–McCall 0∙206 0∙045 –0∙015 0∙065
LM cross-validation (δ = 0∙5) 0∙113 0∙013 –0∙003 0∙073
Linear Global –3∙758 3∙767
Quadratic Global 1∙367 1∙373
Cubic Global –0∙207 0∙214
Quartic Global 0∙015 0∙062
Quintic Global –0∙000 0∙074

CATE(2), zero curvature
hopt (infeasible) ∞ –3∙453 3∙462
ĥopt 0∙173 0∙016 –0∙007 0∙057
No regularization 0∙252 0∙184 –0∙055 0∙260
f (c) estimated using normal kernel 0∙173 0∙016 –0∙007 0∙057
Third-order polynomial separate on left and right 0∙163 0∙013 –0∙006 0∙058
Homoskedastic variance 0∙172 0∙016 –0∙007 0∙057
Uniform kernel 0∙135 0∙013 –0∙003 0∙068
DesJardins–McCall 0∙239 0∙073 –0∙026 0∙095
LM cross-validation (δ = 0∙5) 0∙120 0∙011 –0∙004 0∙069
Linear Global –3∙453 3∙462
Quadratic Global 1∙365 1∙371
Cubic Global –0∙209 0∙216
Quartic Global 0∙015 0∙061
Quintic Global –0∙000 0∙073

end points separately perform poorly (RMSE nearly the size of the RD estimate itself). This
is partly explained by the fact that in this case, these bandwidth choices would benefit from
regularization as well. Note that across all four simulations, the standard deviation of the esti-
mated bandwidth with regularization is lower than that of the bandwidth without regularization,
sometimes by a factor 10. This is because regularization has the added benefit of reducing the
instability of the estimated bandwidth.

7. CONCLUSION

In this paper, we propose a fully data-driven, asymptotically optimal bandwidth choice for RD
settings. Although this choice has asymptotic optimality properties, it still relies on somewhat
arbitrary initial bandwidth choices. Rather than relying on a single bandwidth, we therefore
encourage researchers to use this bandwidth choice as a reference point for assessing sensitivity
to bandwidth choice in RD settings. The bandwidth selection procedures commonly used in
this literature are typically based on different objectives, for example on global measures, not
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tailored to the specific features of the RD setting. We compare our proposed bandwidth selection
procedure to these and find that our proposed method works well in realistic settings, including
one motivated by data previously analysed byLee(2008).

APPENDIX

To obtain the MSE expansions for the RD estimand, we first obtain the bias and variance estimates from estimating a re-
gression function at a boundary point.Fan and Gijbels(1992) derive a version of Lemma A1 under different assumptions
(such as thin tailed rather than compact kernels) and hence, their proof is less transparent and not easily generalizable
to multiple dimensions and derivatives. The proof we outline is based onRuppert and Wand(1994) but since they only
cursorily indicate the approach for a boundary point in multiple dimensions, we provide a simple proof for our case.

Lemma A1 (MSE for Estimation of a Regression Function at the Boundary). Suppose(i ) we have N pairs
(Yi , Xi ), independent and identically distributed, with Xi ≥ 0, (ii) m(x) = E[Yi |Xi = x] is three times continuously
differentiable, (iii) the density of Xi , f (x), is continuously differentiable at x= 0, with f (0) > 0, (iv) the conditional
varianceσ2(x) = Var(Yi |Xi = x) > 0 is bounded, and continuous at x= 0, (v) we have a kernel K: R+ 7→ R, with
K (u) = 0 for u ≥ u, and

∫ u
0 K (u)du = 1, and define Kh(u) = K (u/h)/h. Defineμ = m(0), and

(μ̂h, β̂h) = argmin
μ,β

N∑

i =1

(Yi −μ−β∙Xi )
2∙Kh(Xi ).

Then

E[μ̂|X1, . . . , XN ] −μ = C1/2
1 m(2)(0)h2 +op(h2), (A.1)

V(μ̂|X1, . . . , XN ) = C2
σ2(0)

f (c)Nh
+op

(
1

Nh

)
, (A.2)

and

E[(μ̂−μ)2|X1, . . . , XN ] = C1(m(2)(0))2h4 +C2
σ2(0)

f (0)Nh
+op

(
h4 +

1

Nh

)
, (A.3)

where the kernel-specific constants C1 and C2 are those given in Lemma31.

Before proving Lemma A1, we state and prove two preliminary results.

Lemma A2. Define Fj = 1
N
∑N

i =1 Kh(Xi )X j
i . Under the assumptions in LemmaA1|, (i) for non-negative integerj ,

Fj = h j f (0)ν j +op(h j ) ≡ h j (F∗
j +op(1)),

with ν j =
∫∞
0 t j K (t)dt andF∗

j ≡ f (0)ν j and (ii) if j ≥ 1, Fj = op(h j −1).

Proof. Fj is the average of independent and identically distributed random variables, so

Fj = E[Fj ] + Op(Var(Fj )
1/2).

The mean ofFj is, using a change of variables fromz to x = z/h,

E[Fj ] =
∫ ∞

0

1

h
K
( z

h

)
zj f (z)dz= h j

∫ ∞

0
K (x)x j f (hx)dx

= h j
∫ ∞

0
K (x)x j f (0)dx+h j +1

∫ ∞

0
K (x)x j +1 f (hx)− f (0)

hx
dx

= h j f (0)ν j + O(h j +1).
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The variance ofFj can be bounded by

1

N
E[(Kh(Xi ))

2X2 j
i ] =

1

Nh2
E

[(
K

(
Xi

h

))2
∙X2 j

i

]

=
1

Nh2

∫ ∞

0

(
K
( z

h

))2
∙z2 j f (z)dz.

By a change of variables fromz to x = z/h, this is equal to

h2 j −1

N

∫ ∞

0
(K (x))2∙x2 j f (hx)dx = O

(
h2 j −1

N

)

= o





(
h j

hN1/2

)2


= o((h j )2).

Hence,
Fj = E[Fj ] +op(h j ) = h j f (0)ν j +op(h j ) = h j ∙( f (0)ν j +op(1)).

‖

Lemma A3. Let Gj = 1
N
∑N

i =1 K 2
h(Xi )X j

i σ2(Xi ). Under the assumptions from LemmaA1,

G j = h j −1σ2(0) f (0)π j (1+op(1)), with π j =
∫ ∞

0
t j K 2(t)dt.

Proof. This claim is proved in a manner exactly like Lemma A1, here using in addition the continuity of the conditional
variance function. ‖

Proof of Lemma A1.DefineR= [ιX], whereι is aN-dimensional column of ones, define the diagonal weight matrixW
with (i, i )th element equal toKh(Xi ) and definee1 = (1 0)′. Then

m̂(0) = μ̂ = e′
1(R′W R)−1R′WY.

The conditional bias isB = E[m̂(0)|X1, . . . , XN ] − m(0). Note thatE(m̂(0)|X) = e′
1(R′W R)−1R′W M, whereM =

(m(X1), . . . ,m(XN ))′. Letm(k)(x) denote thekth derivative ofm(x) with respect tox. Using Assumption(i i ) in Lemma
A1, a Taylor expansion ofm(Xi ) yields

m(Xi ) = m(0)+m(1)(0)Xi +
1

2
m(2)(0)X2

i + Ti ,

where
|Ti | ≤ sup

x
|m(3)(x)|∙|X3

i |.

Thus, we can write the vectorM as

M = R

(
m(0)

m(1)(0)

)
+ S+ T ,

where the vectorShasi th element equal toSi = m(2)(0)X2
i /2, and the vectorT has typical elementTi . Therefore, the

bias can be written as
B = e′

1(R′W R)−1R′W M−m(0) = e′
1(R′W R)−1R′W(S+ T).

Using Lemma A2, we have

(
1

N
R′W R

)−1
=

(
F0 F1

F1 F2

)−1

=
1

F0F2 − F2
1

(
F2 −F1

−F1 F0

)

=







F∗
2

F∗
0 F∗

2 −(F∗
1 )2

+op (1) − 1
h

(
F∗

1
F∗

0 F∗
2 −(F∗

1 )2
+op (1)

)

− 1
h

(
F∗

1
F∗

0 F∗
2 −(F∗

1 )2
+op(1)

)
1

h2

(
F∗

0
F∗

0 F∗
2 −(F∗

1 )2
+op(1)

)







=






ν2
(ν0ν2−ν2

1) f (0)
+op(1) − ν1

(ν0ν2−ν2
1) f (0)h

+op

(
1
h

)

− ν1
(ν0ν2−ν2

1) f (0)h
+op

(
1
h

)
Op

(
1

h2

)






=






Op(1) Op

(
1
h

)

Op

(
1
h

)
Op

(
1

h2

)




 .
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Next,
∣
∣
∣
∣

1

N
R′W T

∣
∣
∣
∣= sup

x
m(3)(x)∙

(
F3

F4

)

≤




op

(
h2
)

op(h3)



 .

Thus,

e′
1(R′W R)−1R′W T = Op(1)∙op(h2)+ Op

(
1

h

)
∙op(h3) = op(h2),

implying
B = e′

1(R′W R)−1R′W S+op(h2).

Similarly,

1

N
(R′W S) =

1

2
m(2)(0)




1
N
∑N

i =1 Kh(Xi )X2
i

1
N
∑N

i =1 Kh(Xi )X3
i



=
1

2
m(2)(0) f (0)




ν2h2 +op(h2)

ν3h3 +op(h3)



 .

Therefore,

B = e′
1(R′W R)−1R′W S+op(h2) =

1

2
m(2)(0)

(
ν2
2 −ν3ν1

ν0ν2 −ν2
1

)

h2 +op(h2).

This finishes the proof for the first part of the result in Lemma A1, equation (A.1).
Next, we consider the expression for the conditional variance in equation (A.2).

V = V(m̂(0)|X1, . . . , XN ) = e′
1(R′W R)−1R′W6W R(R′W R)−1e1,

where6 is the diagonal matrix with(i, i )th element equal toσ2(Xi ).
Consider the middle term

1

N
R′W6W R=




1
N
∑

i K 2
h(Xi )σ

2(Xi )
1
N
∑

i K 2
h(Xi )Xi σ

2(Xi )

1
N
∑

i K 2
h(Xi )Xi σ

2(Xi )
1
n
∑

i K 2
h(Xi )X2

i σ2(Xi )



=

(
G0 G1

G1 G2

)

.

Thus, we have

N V =
1

(F0F2 − F2
1 )2

e′
1

(
F2 −F1

−F1 F0

)(
G0 G1

G1 G2

)(
F2 −F1

−F1 F0

)

e1

=
F2

2 G0 −2F1F2G1 + F2
1 G2

(F0F2 − F2
1 )2

.

Applying Lemmas A2 and A3, this leads to

V =
σ2(0)

f (0)Nh
∙

(
ν2
2π0 −2ν1ν2π1 +ν2

1π2

(ν0ν2 −ν2
1)2

)

+op

(
1

Nh

)
.

This finishes the proof for the statement in equation (A.2). The final result in equation (A.3) follows directly from the
first two results. ‖
Proof of Lemma3.1. Applying Lemma A1 to theN+ units with Xi ≥ c implies that

E[μ̂+ −μ+|X1, . . . , XN ] = C1/2
1 m(2)

+ (c)h2 +op(h2),

and

V(μ̂+ −μ+|X1, . . . , XN ) = C2
σ2
+(c)

fX|X≥c(c)N+h
+op

(
1

N+h

)
.

BecauseN+/N = pr(Xi ≥ c)+ Op(1/N), and fX|X≥c(x) = f (x)/Pr(Xi ≥ c), it follows that

V(μ̂+ −μ+|X1, . . . , XN ) = C2
σ2
+(c)

f (c)Nh
+op

(
1

Nh

)
.

Conditional onX1, . . . , XN , the covariance between̂μ+ andμ̂− is zero, and thus, combining the results from applying
Lemma A1 also to the units withXi < c, we find
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E[(τ̂SRD− τSRD)2|X1, . . . , XN ] = E[(μ̂+ − μ̂− − (μ+ −μ−))2|X1, . . . , XN ]

= E[(μ̂+ −μ+)2|X1, . . . , XN ] +E[(μ̂− −μ−)2|X1, . . . , XN ]

−2∙E[μ̂+ −μ+|X1, . . . , XN ]∙E[μ̂− −μ−|X1, . . . , XN ]

= C1∙h4∙
(
m(2)

+ (c)−m(2)
− (c)

)2
+

C2

N∙h
∙

(
σ2
+(c)

f (c)
+

σ2
−(c)

f (c)

)

+op

(
h4 +

1

N∙h

)
,

proving the first result in Lemma 31.
For the second part of Lemma 3.1, solve

hopt = argmin
h

(

C1h4(m(2)
+ (c)−m(2)

− (c))2 +C2

(
σ2
+(c)

f (c)Nh
+

σ2
−(c)

f (c)Nh

))

,

which leads to

hopt =
(

C2

4C1

)1/5





σ2
+(c)
f (c) +

σ2
−(c)
f (c)

(m(2)
+ (c)−m(2)

− (c))2






1/5

N−1/5.

‖
Motivation for the bandwidth choice in equation (15) in Step 2 of bandwidth algorithm:
Fan and Gijbels(1996, Theorem 3.2) give an asymptotic approximation to the MSE for an estimator of theνth derivative
of a regression function at a boundary point using apth order local polynomial (using the notation in Fan and Gijbels).
Specializing this to our case, with the boundary pointc, a uniform one-sided kernelK (t) = 10≤t≤1 and interest in the
second derivative using a local quadratic approximation(ν = p = 2), their MSE formula simplifies to

MSE=

(
1

9
K 2

1(m(3)
+ (c))2h2 +4K2

1

Nh5

σ2
+(c)

f (c)

)

(1+op(1)).

Here,

K1 =
∫

t3K ∗(t)dt and K2 =
∫

(K ∗(t))2dt,

where

K ∗(t) =




0
0
1





′






μ0 μ1 μ2

μ1 μ2 μ3

μ2 μ3 μ4







−1


1
t
t2



 ∙K (t), with μk =
∫

qkK (q)dq =
1

(k+1)
,

so that

K ∗(t) =




0
0
1





′


1 1/2 1/3

1/2 1/3 1/4
1/3 1/4 1/5





−1


1
t
t2



 ∙K (t) = (30−180t +180t2)∙1[0,1],

and therefore,K1 = 1.5 andK2 = 180. Thus,

MSE=

(
1

4
(m(3)

+ (c))2h2 +720
1

Nh5

σ2
+(c)

f+(c)

)

(1+op(1)).

Minimizing this overh leads to

h2,+ = 72001/7∙

(
σ2
+(c)

f (c)(m(3)
+ (c))2

)1/7

N−1/7
+ ≈ 3∙56∙

(
σ2
+(c)

f (c)(m(3)
+ (c))2

)1/7

N−1/7
+ .

Proof of Theorem 4.1. Before directly proving the three claims in the theorem, we make some preliminary observations.
Write

hopt = Copt∙N
−1/5, with Copt = CK ∙







σ2
−(c)+σ2

+(c)

f (c)∙
((

m(2)
+ (c)−m(2)

− (c)
)2
)







1/5
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and

ĥopt = Ĉopt∙N
−1/5, with Ĉopt = CK ∙

(
σ̂2
−(c)+ σ̂2

+(c)

f̂ (c)∙((m̂(2)
+ (c)− m̂(2)

− (c))2 + r̂+ + r̂−)

)1/5

.

First, we show that the various estimates of the functionals inĈopt, σ̂2
−(c), σ̂2

+(c), f̂ (c), m̂(2)
+ (c) andm̂(2)

− (c) converge

to their counterparts inCopt, σ2
−(c), σ2

+(c), f (c), m(2)
+ (c) andm(2)

− (c). Consider f̂ (c). This is a histogram estimate of
density atc, with bandwidthh = C N−1/5. Hence, f̂ (c) is consistent forf (c) if f−(c) = f+(c) = f (c), if the left- and
right-hand limit are equal and for( f−(c)+ f+(c))/2 if they are different.
Next, considerσ̂2

−(c) (and σ̂2
+(c)). Because it is based on a bandwidthh = C∙N−1/5 that converges to zero, it is

consistent forσ2
−(c) if σ2

−(c) = σ2
+(c) = σ2(c).

Third, considerm̂(2)
+ (c). This is a local quadratic estimate using a one-sided uniform kernel. From (Fan and Gijbels,

1996, Theorem 3.2), it follows that to guarantee consistency ofm̂(2)
+ (c) for m(2)

+ (c), we need both

h2,+ = op(1) and (Nh5
2,+)−1 = op(1). (A.4)

Let m3 be the probability limit ofm̂(3)(c). This probability limit need not be equal tom(3)(c), but it will exist under the
assumptions in Theorem 4.1. As long as this probability limit differs from zero, thenh2,+ = Op(N−1/7), so that the

two conditions in equation (A.4) are satisfied and̂m(2)
+ (c) is consistent form(2)

+ (c).
Fourth, considerr̂+ = 2160σ̂2

+(c)/(N2,+h4
2,+). The numerator converges to 2160σ2

+(c). The denominator is

N2,+∙h4
2,+ = C∙(N∙h2,+)∙N−4/7(1+op(1)) = C∙N2/7(1+op(1)), so that the ratio isC∙N−2/7(1+op(1)) = op(1).

A similar result holds for̂r−.
Now we turn to the statements in Theorem 4.1. We will prove (iii), then (iv), and then (i) and (ii). First, consider
(iii). If m(2)

+ (c)−m(2)
− (c) differs from zero, thenCopt is finite. Moreover, in that case(m̂(2)

+ (c)− m̂(2)
− (c))2 + r̂+ + r̂−

converges to(m̂(2)
+ (c)− m̂(2)

− (c))2, andĈopt converges toCopt. These two implications in turn lead to the result that
(ĥopt−hopt)/hopt = (Ĉopt−Copt)/Copt = op(1), finishing the proof for (iii).
Next, we prove (iv). Becausehopt = Copt∙N−1/5, it follows that

MSE(hopt) = AMSE(hopt)+op

(
h4

opt+
1

N∙hopt

)
= AMSE(hopt)+op(N−4/5).

Becausêhopt = (Ĉopt/Copt)∙CoptN−1/5 andĈopt/Copt → 1 it follows that

MSE(ĥopt) = AMSE(ĥopt)+op(N−4/5).

Therefore,
N4/5∙(MSE(ĥopt)−MSE(hopt)) = N4/5∙(AMSE(ĥopt)−AMSE(hopt))+op(1),

and
MSE(ĥopt)−MSE(hopt)

MSE(hopt)
=

N4/5∙(MSE(ĥopt)−MSE(hopt))

N4/5∙MSE(hopt)

=
N4/5∙(AMSE(ĥopt)−AMSE(hopt))+op(1)

N4/5∙AMSE(hopt)+op(1)

=
N4/5∙(AMSE(ĥopt)−AMSE(hopt))

N4/5∙AMSE(hopt)
+op(1).

BecauseN4/5∙AMSE(hopt) converges to a non-zero constant, all that is left to prove in order to establish (iv) is that

N4/5∙(AMSE(ĥopt)−AMSE(hopt)) = op(1). (A.5)

Substituting in, we have

N4/5∙(AMSE(ĥopt)−AMSE(hopt)) = C1∙(m(2)
+ (c)−m(2)

− (c))2∙((N1/5hopt)
4 − N1/5ĥopt)

4)

+

(
C2

N1/5∙hopt
−

C2

N1/5∙ĥopt

)

∙

(
σ2
+(c)

f (c)
+

σ2
−(c)

f (c)

)

= op(1)

becauseN1/5hopt− N1/5ĥopt = Copt− Ĉopt = op(1), so that equation (A.5) holds, and therefore, (iv) holds.
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Now we turn to (i). If Assumption 3.6 holds,ĥopt = ĈoptN−1/5, with Ĉopt → Copt, a non-zero constant. Then, Lemma
3.1 implies that MSE(ĥopt) is Op(ĥ4

opt + N−1ĥ−1
opt) = Op(N−4/5) so thatτ̂SRD− τSRD = Op(N−2/5). Next con-

sider (ii). If Assumption 36 does not hold andm(2)
+ (c)− m(2)

+ (c) = 0. Becauseh2,+ = C N−1/7, it follows thatr+ =
C N−1

2,+h−4 = C N−2/7(1+op(1)) (with each time different constantsC), it follows thatĥopt = C(N2/7)1/5N−1/5 =

C N−1/7, so that the MSE(h) = C N−6/7 + C̃ N−6/7 = C N−6/7 (note that the leading bias term is nowO(h3) so that
the square of the bias isO(h6) = O(N−6/7)) and thusτ̂SRD− τSRD = Op(N−3/7), and thus the result holds.‖
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